Institute for Controlled Speleogenesis

Recently, I’ve been looking back at a collaborative project with John Becker of WROT Studio.

The “Institute for Controlled Speleogenesis” (2014) was a fictional design project we originally set in the vast limestone province of Australia’s Nullarbor Plain.

[Image: A rock-acid drip-irrigation hub for the “Institute for Controlled Speleogenesis,” a collaboration between BLDGBLOG and WROT Studio; all images in this post are by John Becker of WROT Studio.]

The Nullarbor Plain is a nearly treeless region, roughly the size of Nebraska. It is also the world’s largest karst landscape, and thus home to hundreds of natural caves.

“There is a great variety of cave types under the Nullarbor,” as Australian Geographic explains, “but the plain’s most interesting features are long, deep systems (such the Old Homestead Cave), which are found only here, in the U.S. state of Florida, and on Mexico’s Yucatan Peninsula, all of which all have similar karst limestone layers.”

The Institute for Controlled Speleogenesis was imagined as a remote, thinly staffed site for applied geological research, where huge artificial caves could be generated below the Earth’s surface using a special acid mix—as safe as vinegar, but, importantly for our project, capable of dissolving limestone on a greatly accelerated timescale.

Subterranean spaces of every conceivable size, from tiny hollows and capillaries to vast megastructures, could thus be acid-etched into even the deepest karst formations, both rapidly and over decadal expanses of time.

The resulting rooms, tunnels, and interconnected cave systems could be used for a wide range of purposes: generating speleo-pharmaceuticals, for example, as well as testing recreational caving equipment, experimenting with underground agricultural systems, or developing new technologies for subterranean navigation, communication, inhabitation, and mapping.

As John writes on his own website—where you can also see larger, more-detailed versions of these images—our “aberrant caverns,” in John’s phrase, would be monitored in real-time by autonomous systems operating 24 hours a day.

The ever-growing caves could thus be left on their own, unsupervised, while the acid-drip system gradually etches down, drop by drop, reaching increasingly remote underground realms that the acid itself creates.

As a preliminary step, different blends of rock-acid mix would first be tested on large pillars aboveground, to choose or highlight specific spatial effects.

Controlled showers of rock-acid would result in totem-like sculptures, like industrial-scale menhirs—Stone Age ritual artifacts by way of 21st-century geochemistry.

Once the desired effects have been achieved, fields of bladders, nozzles, and injection arrays can be programmed and choreographed to enlarge an artificial cave mouth.

The irrigation system can then be continued underground. Necklaces of acid-drip arrays can easily be extended underground in order to expand the cave itself, but also to lengthen certain tunnels or to experiment with architecturally stable cave formations.

As John explains, the images seen here depict an “injection array using a pressurized system to move large quantities of solution to underlying areas of the cave network. These injection sites are outwardly the tell for a hidden world below. Much like oil derricks extracting resources from the earth, their density and scale across the landscape give you a glimpse into areas afforded the most resources for injection.”

Our initial siting of this in the Nullarbor Plain was motivated entirely by geology, but other large limestone provinces—from Kentucky or northern Arizona to southern France, and from California’s Lucerne Valley to Egypt—would also be good hosts.

While we looked into standard mining acids, currently used for stripping tailings piles of valuable minerals, it quickly became apparent that specific kinds of acetic acid—again, no more toxic than vinegar—offered a more viable approach for creating a maximally spacious site with minimally polluting environmental implications. (Of course, should someone without such qualms want to explore this set-up with no concern for its ecological impact, then much stronger acids capable of dissolving much stronger rocks could also be explored.)

In 2022, I was excited to see that John returned to this project, generating a new series of images using AI image-generation software trained on our earlier project documentation. Given their provenance, the resulting images are unsurprisingly cinematic—equal parts cyberpunk dereliction and underworldly luminescence.

Over the years, John has become a wizard at producing Modernist geological imagery, publishing images on his Instagram account—rock sculpted as smooth as paper and as diaphanous as a veil or curtain.

Check out his own website for more images of the Institute for Controlled Speleogenesis and other recent projects. And, if you like this, don’t miss “Architecture-by-Bee and Other Animal Printheads,” an earlier project of ours that I’m proud to say was published in Paul Dobraszczyk’s excellent recent book, Animal Architecture: Beasts, Buildings and Us.

(All images in this post are by John Becker of WROT Studio. This post contains a Bookshop.org affiliate link, meaning that I might receive a small percentage of any resulting sales.)

The Reaction Area

Enigmatic chemical reactions” have broken out underground inside two Los Angeles-area landfills, according to the L.A. Times. These “highly unusual reactions at Los Angeles County’s two largest landfills have raised serious questions about the region’s long-standing approach to waste disposal and its aging dumps.”

If landfills are the extreme endpoint of a cultural practice of burial—we bury to memorialize, to forget, to protect, to hide, store, and retrieve—then the idea that what we’ve made subterranean might take on a life or chemical activity of its own has a strange irony. Landfills seem to fully embody the idea that we don’t understand the extent of we’ve placed into the ground, nor what it does once we leave it there. Perhaps we also bury to reinvigorate and transform.

I’m reminded of a story from the British nuclear facility at Sellafield, whose new owners realized they had incomplete documentation of the site and thus had no idea where radioactive waste had been buried there. They actually put an ad in the local newspaper saying, “We need your help. Did you work at Sellafield in the 1960s, 1970s or 1980s? Were you by chance in the job of disposing of radioactive material? If so, the owners of Britain’s nuclear waste dump would very much like to hear from you: they want you to tell them what you dumped—and where you put it.”

It feels oddly on-brand with modern living that we might not fully understand long-term landfill chemistry, that random solvents, dyes, acids, fuels, and detergents sloshing around together in huge, sealed landscapes for decades might break out in unexplained reactions, like inadvertent batteries—that we isolated our waste, thinking it would make us safe, but it is only gaining in chemical power.

As of November 2023, the “reaction area” in one of the L.A. dumps “had grown by 30 to 35 acres, according to the agency [CalRecycle]. Already, the heat has melted or deformed the landfill’s gas collection system, which consists mostly of polyvinyl chloride well casings. The damage has hindered the facility’s efforts to collect toxic pollutants.” This seems to imply it will get worse, and nearby residents have begun reporting chemical smells.

“The bad news,” L.A. County Supervisor Kathryn Barger told the paper, “is we’ve never seen anything like this, and if we don’t understand what triggered it, it could happen at other landfills that are dormant. So it’s important for us to get a handle on it.” The earth, riddled with dormant landfills, attaining enigmatic chemical vigor in the darkness.

(Related: Class Action, Land of Fires, and The Landscape Architecture of Crisis.)

Agency of the Subsurface

[Image: The Heathen Gate at Carnuntum, outside Vienna; photo by Geoff Manaugh.]

Last summer, a geophysicist at the University of Vienna named Immo Trinks proposed the creation of an EU-funded “International Subsurface Exploration Agency.” Modeled after NASA or the ESA, this new institute would spend its time, in his words, “looking downward instead of up.”

The group’s main goal would be archaeological: to map, and thus help preserve, sites of human settlement before they are lost to development, natural decay, climate change, and war.

Archaeologist Stefano Campana, at the University of Siena, has launched a comparable project called Sotto Siena, or “Under Siena”—abbreviated as SOS—intended to survey all accessible land in the city of Siena.

[Image: A few of Siena’s innumerable arches; photo by Geoff Manaugh.]

That project’s goal is primarily to catalog the region’s millennia of human habitation and cultural artifacts, but, like Immo Trinks and his proposed ISEA, is also serving to document modern-day infrastructure, such as pipes, utilities, sewers, and more. (When I met Campana in Siena last year, I was interested to learn that a man who had walked over to say hello, who was introduced to me as an enthusiastic supporter of Campana’s work, was actually Siena’s chief of police—it’s not just archaeologists who want to know what’s going on beneath the streets.)

I had the pleasure of tagging along with both Trinks and Campana last year as part of my Graham Foundation grant, “Invisible Cities,” and a brief write-up of that experience is now online over at WIRED.

The article begins in Siena, where I joined Campana and two technicians from the Livorno-based firm GeoStudi Astier for a multi-hour scan of parks, piazzas, and streets, using a ground-penetrating radar rig attached to a 4WD utility vehicle.

[Images: The GPR rig we rode in that day, owned and operated by GeoStudi Astier; photos by Geoff Manaugh.]

We stayed out well past midnight, at one point scanning a piazza in front of the world’s oldest bank, an experience that brought back positive memories from my days reporting A Burglar’s Guide to the City (alas, we didn’t discover a secret route into or out of the vault, but just some fountain drains).

In Vienna, meanwhile, Trinks drove me out to see an abandoned Roman frontier-city and military base called Carnuntum, near the banks of the Danube, where he walked me through apparently empty fields and meadows while narrating all the buildings and streets we were allegedly passing through—an invisible architecture mapped to extraordinary detail by a combination of ground-penetrating radar and magnetometry.

“We want to map it all—that’s the message,” Trinks explained to me. “You’re not just mapping a Roman villa. You’re not mapping an individual building. You are mapping an entire city. You are mapping an entire landscape—and beyond.”

An estimated 99% of Carnuntum remains unexcavated, which means that our knowledge of its urban layout is almost entirely mediated by electromagnetic technology. This, of course, presents all sorts of questions—about data, machine error, interpretation, and more—that were explained to me on a third leg of that trip, when I traveled to Croatia to meet Lawrence B. Conyers.

[Image: A gorge leading away behind the archaeological site I visited on the island of Brač, Croatia; photo by Geoff Manaugh.]

Conyers is an American ground-penetrating radar expert who, when we met, was spending a couple of weeks out on the island of Brač, near the city of Split. He had traveled there to scan a hilltop site, looking for the radar signatures of architectural remains, in support of a project sponsored by the University of Colorado at Boulder.

Conyers supplies a voice of caution in the WIRED piece, advising against over-relying on expensive machines for large-scale data collection if the people hoarding that data don’t necessarily know how to filter or interpret it.

[Image: Lawrence Conyers supervises two grad students using his ground-penetrating radar gear; photo by Geoff Manaugh.]

The goal of an International Subsurface Exploration Agency could rise or fall, in other words, not just on questions of funding or public support, but on the limits of software analysis and human interpretation: are we sure that what we see on the screens of our machines is actually there, underground?

When we spoke in Siena, Campana used the metaphor of a medical biopsy, insisting that archaeologists and geophysicists will always need to excavate, not just for the recovery of historical artifacts and materials, but for verifying their own hypotheses, literally testing the ground for things they think they’ve seen there.

Archaeologist Eileen Ernenwein, co-editor of the journal Archaeological Prospection, also emphasized this to me when I interviewed her for WIRED, adding a personal anecdote that has stuck with me. During her graduate thesis research, Ernenwein explained, she found magnetic evidence of severely eroded house walls at an indigenous site in New Mexico, but, after excavating to study them, realized that the structure was only visible in the electromagnetic data. It was no less physically real for only being visible magnetically—yet excavation alone would have almost certainly have missed the site altogether. She called it “the invisible house.”

In any case, many things have drawn me to this material, but the long-term electromagnetic traces of our built environment get very little discussion in architectural circles, and I would love this sort of legacy to be more prominently considered. What’s more, our cultural obsession with ruins will likely soon begin to absorb new sorts of images—such as radar blurs and magnetic signatures of invisible buildings—signaling an art historical shift in our representation of the architectural past.

For now, check out the WIRED article, if you get a chance.

(Thanks again to the Graham Foundation for Advanced Studies in the Fine Arts for supporting this research. Related: Through This Building Shines The Cosmos.)

Cleared For Approach

[Image: “Forest and Sun” (1926) by Max Ernst.]

When I first saw this painting—“Forest and Sun” (1926) by Max Ernst, a composition and theme he continually revisited and changed over the course of his career—I mistook the tiny white squiggles in the lower right for a procession of human congregants or religious pilgrims, people approaching a huge, alien landform out of some strange act of homage or scientific curiosity. Alas, it’s just Max Ernst’s signature.

Whatever you’re approaching in 2023, may it be unfamiliar, potentially threatening, and new.

Luminous Dreamlight

I spent part of the weekend down in Orange County, looking at birds, then the better part of an hour scrolling around on Google Maps, trying to figure out where we’d been all day.

[Image: Courtesy Google Maps.]

In the process, I noticed some incredible street names. I love this development, for example, with its absurdist, greeting-card geography: you can meet someone at the corner of Luminous and Dreamlight, or rendezvous with your Romeo on the thin spit of land where Silhouette meets Balcony.

The same development has streets called Symphony, Pageantry, and Ambiance—and don’t miss “Momento” [sic]. Nearby is a street called Heather Mist.

I live on Yacht Defender; please leave my packages at the front door.

[Image: Courtesy Google Maps.]

As you can probably tell, I have nothing particularly interesting to say about this; I’m just marveling at suburban naming conventions. I’m reminded of when we moved back to L.A. a few years ago and we were looking for paint colors, finding shades like “Online,” “Software,” and “Cyberspace.” A paint called “Download.”

A beautiful new house on Firmware Update, painted entirely in Autocomplete. Spellcheck Lane, painted in a color called Ducking.

[Image: Courtesy Google Maps.]

In any case, Orange County is actually a fascinating, Ballardian landscape of freeways built for no apparent reason other than to connect one grocery store to the next as fast as possible, residential subdivisions forming interrupted crystal-tiling patterns, migratory bird species flying over car parks, and vaguely named corporate research centers on the rims of artificial reservoirs.

Anecdotally, it has always seemed to me that fans of J.G. Ballard—or ostensible fans of J.G. Ballard—are suspiciously quick in condemning the very landscapes where so many of Ballard’s best stories take place, the suburban business parks, toll motorways, and heavily-policed private infrastructures of real estate developments outside London, in the south of France, or here in Orange County, where subdivisions seem named after the very animals whose ecosystems were destroyed during construction.

But, I mean, come on—where else should a J.G. Ballard fan read Concrete Island or Super-Cannes than in a $3 million rented home on Gentle Breeze, pulling monthly paychecks from ambiguously-defined consultant-engineering gigs, studying schematic diagrams for water-treatment plants at your kitchen table, all while driving a leased luxury car?

One such engineering firm, based near the developments described here, describes its expertise as tackling “earth-related problems” on “earth-related projects.” Earth-related problems. There should be a DSM-5 entry for that.

[Image: Courtesy Google Maps.]

Anyway, all future Ballard conventions should take place in landscapes like this—enormous rented homes impossible to climate-control, overlooking electric-SUV dealerships constructed atop former egret nesting grounds—at the metaphorical intersection of Luminous and Dreamlight.

Impact Gardening

Impact gardening” is the evocative term used to describe surface disturbance—and potential biological effects—caused by the crashing of extraterrestrial objects into planetary bodies.

[Image: The surface of Europa, including “the kind of areas churned by impact gardening.”]

These impacts can “churn” or, in effect, plow the surface, exposing previously buried materials to solar radiation—which, in turn, can break down and even sterilize any life thriving there—but it can also push potential organic matter “downward, where it could mix with the subsurface,” almost like planting seeds, according to a short feature published today by NASA.

“If we hope to find pristine, chemical biosignatures,” planetary researcher Emily Costello explained to NASA, “we will have to look below the zone where impacts have been gardening.”

Distant planetary landscapes, gardened by impacts.

Read more over at NASA—I’m honestly just posting this for the poetry of the phrase impact gardening

(Somewhat related: Life on the Subsurface: An Interview with Penny Boston.)

Feathered Friends

After the previous post, I was interested to see a short piece over at The New Yorker about basically the same idea—of spotting invasive species in the backgrounds of films and television shows, but, there, applied much more broadly to art history.

The article, by Rebecca Mead, looks at the unexpected presence of a cockatoo in an image by Italian Renaissance-era painter Andrea Mantegna, as the bird’s “native habitat is restricted to Australia, Indonesia, Papua New Guinea, the Solomon Islands, and the Philippines.” How did it get to 15th-century Italy—and more specifically, Mead asks, “what did the bird’s presence reveal about the connections between an Italian city and distant forests that lay beyond the world known to Europeans?”

[Image: A cockatoo in the background of Andrea Mantegna’s “Madonna della Vittoria” (1496), via Wikimedia.]

It’s a fun read, and includes a final archival detail I’ll mention briefly—I am particularly obsessed with rare finds in archives, to be honest, and this is a good one. It turns out that Mantegna’s painting was not the first depiction of a cockatoo in European art history. Instead, a manuscript hidden away in a Vatican library included an even earlier representation, made in the mid-1200s. Art history as forensic ecology.

Little creatures popping up in paintings and films, in engravings and TV shows, their presence there indicating larger tides of trade or climate change, acting as a strange barometer of the natural world.

(Related: Check the Sonic.)

Terrestrial Astronomy

[Image: “The Empty Quarter (Nevada)” (2021), collage by Geoff Manaugh, using maps from the U.S. Geological Survey.]

I’m thrilled to have some map collages in the latest issue of the Yale Review.

[Image: “Groundwater Grids (North Dakota)” (2020), collage by Geoff Manaugh, using maps from the U.S. Geological Survey.]

I started making these during lockdown, as part of a larger (and, to be honest, now doomed-feeling) graphic novel project using public domain U.S. Geological Survey maps as the main material.

[Images: “Keys II (Florida)” (2020) and “Keys I (Florida)” (2020), collages by Geoff Manaugh, using maps from the U.S. Geological Survey; the source maps for these are particularly interesting, because they utilize satellite photography.]

The images in this post include a few collages not published in the Yale Review, but click through for the full issue’s broad selection of poetry, essays, fiction, and more.

[Images: “Morse Landscape II (Louisiana)” and “Morse Landscape I (Louisiana)” (2021), collages by Geoff Manaugh, using maps from the U.S. Geological Survey.]

And huge, huge thanks to Eugenia Bell for the editorial interest!

[Images: Various collages by Geoff Manaugh, using maps from the U.S. Geological Survey.]

If you’re looking for someone to design a book cover or album cover or event poster, hit me up.

[Image: “Terrestrial Astronomy (Nevada)” (2021), collage by Geoff Manaugh, using maps from the U.S. Geological Survey; it’s a pedestrian observation, but inverting the color scheme of geological maps makes them look like maps of stars.]

The Magnetic Depths

The emerging sub-genre of public service announcements about geological surveys—apparently offered not just due to FAA regulations, but to quell the growth of potential conspiracy theories—continues with this heads-up about a “low-flying airplane” over parts of Virginia and North Carolina.

[Image: USGS map of eastern Virginia, altered by BLDGBLOG.]

Of course, beyond the idea of simply preempting the development of new conspiracy theories, the work being done by the project is fascinating in and of itself: “Instruments on the airplane will measure variations in the Earth’s magnetic field and natural low-level radiation created by different rock types near and up to several miles beneath the surface. This information will help researchers develop geologic maps of the area that will be used to better understand sand resources and underground faults in the region.”

While we’re on the topic of the Virginia/North Carolina border region, I’m reminded of why there’s a strange “notch” in the state line, a story “that mostly involves collecting taxes and avoiding swamps”: “The rough and rowdy inhabitants living close to the border told North Carolina tax collectors they lived in Virginia, [Gates County historian Linda Hofler] said. When the Virginia tax man came, they said North Carolina was their home.”

In any case, check out the USGS for more on the low-flying geomagnetic airplane and The Virginian-Pilot for more on VA/NC border history.

(Related: Geomedia, or What Lies Below.)

Geomedia, or What Lies Below

[Image: Courtesy USGS.]

I love the fact that the U.S. Geological Survey had to put out a press release explaining what some people in rural Wisconsin might see in the first few weeks of January: a government helicopter flying “in a grid pattern relatively low to the ground, hundreds of feet above the surface. A sensor that resembles a large hula-hoop will be towed beneath the helicopter,” the USGS explains—but it’s not some conspiratorial super-tool, silently flipping the results of voting machines. It’s simply measuring “tiny electromagnetic signals that can be used to map features below Earth’s surface,” including “shallow bedrock and glacial sediments” in the region.

Of course, the fictional possibilities are nevertheless intriguing: government geologists looking for something buried in the agricultural muds of eastern Wisconsin, part Michael Crichton, part Stephen King; or CIA contractors, masquerading as geologists, mapping unexplained radio signals emanating from a grid of points somewhere inland from Lake Michigan; or a rogue team of federal archaeologists searching for some Lovecraftian ruin, a lost city scraped down to its foundations by the last Ice Age, etc. etc.

In any case, the use of remote-sensing tools such as these—scanning the Earth to reveal electromagnetic, gravitational, and chemical signatures indicative of mineral deposits or, as it happens, architectural ruins—is the subject of a Graham Foundation grant I received earlier this autumn. That’s a project I will be exploring and updating over the next 10 months, combining lifelong obsessions with archaeology and ruins (specifically, in this case, the art history of how we depict destroyed works of architecture) with an interest in geophysical prospecting tools borrowed from the extraction industry.

In other words, the same remote-sensing tools that allow geological prospecting crews to locate subterranean mineral deposits are increasingly being used by archaeologists today to map underground architectural ruins. Empty fields mask otherwise invisible cities. How will these technologies change the way we define and represent architectural history?

[Image: Collage, Geoff Manaugh, for “Invisible Cities: Architecture’s Geophysical Turn,” Graham Foundation 2020/2021; based on “Forum Romano, Rome, Italy,” photochrom print, courtesy U.S. Library of Congress.]

For now, I’ll just note another recent USGS press release, this one touting the agency’s year-end “Mineral Resources Program Highlights.”

Included in the tally is the “Earth MRI” initiative—which, despite the apt medical-imaging metaphor, actually stands for the “Earth Mapping Resource Initiative.” From the USGS: “When learning more about ancient rocks buried deep beneath the surface of the Earth, it may seem surprising to use futuristic technologies flown hundreds of feet in the air, but that has been central to the USGS Earth Mapping Resource Initiative.”

[Image: A geophysical survey of northwestern Arkansas, courtesy USGS.]

What lies below, whether it is mineral or architectural, is becoming accessible to surface view through advanced technical means. These new tools often reveal that, beneath even the most featureless landscapes, immensely interesting forms and structures can be hidden. Ostensibly boring mud plains can hide the eroded roots of ancient mountain chains, just as endless fields of wheat or barley can stand atop forgotten towns or lost cities without any hint of the walls and streets beneath.

The surface of the Earth is an intermediary—it is media—between us and what it disguises.

(See also, Detection Landscapes and Lost Roads of Monticello.)

Acoustic Archaeology

In her new book, The Bird Way, Jennifer Ackerman describes Australian lyrebirds as audio archaeologists, birds capable of keeping lost songs and soundscapes alive across multiple generations even as local ecologies change.

She describes a group of lyrebirds captured in one part of Australia and later released in Tasmania. “The birds continued mimicking birdcalls from their old landscape for many years,” Ackerman writes. “Thirty years after they were released, their descendants were said to be imitating birds never present on the island, such as pilotbirds and whipbirds,” thus offering what Ackerman calls “compelling proof of cultural transmission, one generation passing on knowledge to the next.”

For Ana Dalziell, a lyrebird-expert Ackerman meets out in the field, this makes lyrebirds “archivists of soundscapes.”

[Image: Painting of a lyrebird by John Gould, courtesy archive.org.]

The idea that the acoustics of no-longer-existing landscapes are being passed down socially through generations of songbirds is incredible, as well as suggestive of a possible tool by which landscape historians could attempt the sonic reconstructing lost environments.

The sounds of old elevators or HVAC systems in a now-destroyed building—perhaps even a demolished work by a globally renowned architect, her building now known only through acoustic after-effects, its buzzes and whirs still passed tree to tree—still being imitated by local songbirds; or the sounds of wind passing through now-extinct trees, or trees lost to recent wildfires, still being reproduced by local songbirds; or the sounds of ground-dwelling predators who are not extinct, but have nevertheless moved on to other parts of Australia, still popping up as acoustic imitations: an audio archaeology based entirely in the communal surround-sound of social singers.

You want to hear the sounds of lost buildings or extinct landscapes, and merely need to head deep into the trees, listening to lyrebirds along the way.

(Thanks to Nicola Twilley for giving me The Bird Way!)