Numbers Pool

[Image: “Solomon’s Pools & ancient aqueducts…,” via Library of Congress.]

There’s a beautiful description over at New Scientist of a hypothetical new form of computing device, a “liquid crystal computer” in which calculations would move “like ripples through the liquid.”

According to researchers Žiga Kos and Jörn Dunkel, calculations would be performed by—and registered as—crystal orientations in the liquid, induced or controlled by electromagnetism: “Electric fields could… be used to manipulate the molecules to perform basic calculations, similar to how simple circuits called logic gates work in an ordinary computer. Calculations on the proposed computer would appear as ripples spreading through the liquid.”

Liquid-supercomputer facilities of the near-future might thus resemble not server farms but aquatic centers, sealed interiors lined with reflecting pools kept in different electromagnetic regimes. Although the air inside is utterly still, you watch as small ripples bounce and roll across the surface of each pool, depths triggered by equations. Thinking machines masked as hydrologic infrastructure. Cisterns and aqueducts. Computational hydrology.

There’s a line by William S. Burroughs that I probably quote too often, but I’m nevertheless reminded of again here. Burroughs once described “a vast mineral consciousness near absolute zero thinking in slow formations of crystal,” but perhaps this new vision is more akin to an oceanic consciousness thinking in slow tides and currents, liquid crystal waves of calculation breaking through the deep.

[Image: “The ancient swimming pool at Bath,” via Library of Congress.]

Briefly, given the prevalence of cauldron imagery in Western myth, there is something almost folkloristic about the idea of liquid technologies such as this—pools that can model the future or offer visions of other worlds.

In fact, it tangentially brings to mind another wild proposal: constructing the “Ultimately Large Telescope” [PDF], a vast spinning cauldron on the moon, reflecting astral light from a facility constructed inside the darkness of a lunar crater.

This hypothetical telescope, Universe Today explains, “would rely on liquids rather than coated glass (making it much cheaper to transport to the Moon). One type of liquid would be arranged in a spinning vat while a second metallic liquid (like mercury, which is reflective) would be positioned on top. The vat would spin continuously to keep the surface of the liquid in the correct parabolic shape to work as a mirror.” A witches’ cauldron on the moon, peering into space.

(Vaguely related: Dark Matter Mineralogy and Future Computers of Induced Crystal Flaws.)

Landscape Futures Super-Trip

I’m heading off soon on a road trip with Nicola Twilley, from Edible Geography, to visit some incredible sites (and sights) around the desert southwest, visiting places where architecture, astronomy, and the planetary sciences, to varying degrees, overlap.

[Image: The Very Large Array].

This will be an amazing trip! Our stops include the “world’s largest collection of optical telescopes,” including the great hypotenuse of the McMath-Pierce Solar Telescope, outside Tucson; the Very Large Array in west-central New Mexico; the Controlled Environment Agriculture Center at the University of Arizona, aka the “lunar greenhouse,” where “researchers are demonstrating that plants from Earth could be grown without soil on the moon or Mars, setting the table for astronauts who would find potatoes, peanuts, tomatoes, peppers and other vegetables awaiting their arrival”; the surreal encrustations of the Salton Sea, a site that, in the words of Kim Stringfellow, “provides an excellent example of the the growing overlap of humanmade and natural environments, and as such highlights the complex issues facing the management of ecosystems today”; the Fred Lawrence Whipple Observatory, with its automated scanning systems used for “robotic searches for variable stars and exoplanets” in the night sky, and its gamma-ray reflectors and “blazar lightcurves” flashing nearby; the Grand Canyon; Red Rocks, outside Sedona; the hermetic interiorities of Biosphere 2; White Sands National Monument and the Trinity Site marker, with its so-called bomb glass; the giant aircraft “boneyard” at the Pima Air & Space Museum; and, last but not least, the unbelievably fascinating Lunar Laser-ranging Experiment at Apache Point, New Mexico, where they shoot lasers at prismatic retroreflectors on the moon, testing theories of gravitation, arriving there by way of the nearby Dunn Solar Telescope.

[Image: The “Electric Aurora,” from Specimens of Unnatural History, by Liam Young].

The ulterior motive behind the trip—a kind of text-based, desert variation on Christian Houge’s study of instrumentation complexes in the Arctic—is to finish up my curator’s essay for the forthcoming Landscape Futures book.

That book documents a forthcoming exhibition at the Nevada Museum of Art called Landscape Futures: Instruments, Devices and Architectural Inventions, featuring work by David Benjamin & Soo-in Yang (The Living), Mark Smout & Laura Allen (Smout Allen), David Gissen, Mason White & Lola Sheppard (Lateral Office), Chris Woebken, and Liam Young.

Finally, Nicola and I will fall out of the car in a state of semi-delirium in La Jolla, California, where I’ll be presenting at a 2-day symposium on Designing Geopolitics, “an interdisciplinary symposium on computational jurisdictions, emergent governance, public ecologies,” organized by Benjamin Bratton, Daniel Rehn, and Tara Zepel.

That will be free and open to the public, for anyone in the San Diego area who might want to stop by, and it will also be streamed online in its entirety; the full schedule is available at the Designing Geopolitics site.

(Earlier on BLDGBLOG: Landscape Futures Super-Workshop, Landscape Futures Super-Dialogue, and Landscape Futures Super-Media).