Potsdamer Sea

[Image: From Kiessling’s Grosser Verkehrs-Plan von Berlin (1920).]

It’s funny to be back in Berlin, a city where I once thought I’d spend the rest of my life, first arriving here as a backpacker in 1998 and temporarily moving in with a woman 14 years older than me, who practiced Kabbalah and had twin dogs and who, when seeing that I had bought myself a portable typewriter because I was going through a William Burroughs phase, blessed it one night in her apartment near the synagogue in a ceremony with some sort of bronze sword. It’s almost literally unbelievable how long ago that was. More years have passed since I spent time in Berlin—supposedly to study German for grad school, but in reality organized entirely around going to Tresor—than I had been alive at the time.

Because I’m here again on a reporting trip, I was speaking yesterday evening with a former geophysicist who, when the Berlin Wall came down, found work doing site-remediation studies and heritage-mapping projects on land beneath the old path of the Wall. He was tasked with looking for environmental damage and unexploded ordnance, but also for older foundations and lost buildings, earlier versions of Berlin that might pose a structural threat to the city’s future or that needed to be recorded for cultural posterity.

Ironically, in a phase of my life I rarely think about, I wrote my graduate thesis on almost exactly this topic, focused specifically on Potsdamer Platz—once divided by the Wall—and the role of architectural drawings in communicating historical context. When I was first here, in 1998 into early 1999, Potsdamer Platz was still a titanic hole in the ground, an abyss flooded with groundwater, melted snow, and rain, a kind of maelström you could walk over on pedestrian bridges, where engineering firms were busy stabilizing the earth for what would become today’s corporate office parks.

As I told the former geophysicist last night, I remember hearing at the time that there were people down there, SCUBA diving in the floodwaters, performing geotechnical studies or welding rebar or looking for WWII bombs, I had no idea, but, whatever it was, their very existence took on an outsized imaginative role in my experience of the city. Berlin, destroyed by war, divided by architecture, where people SCUBA dive through an artificial sea at its broken center. It felt like a mandala, a cosmic diagram, with this inverted Mt. Meru at its heart, not an infinite mountain but a bottomless pit.

What was so interesting to me about Berlin at the time was that it felt like a triple-exposure photograph, the city’s future overlaid atop everything else in a Piranesian haze of unbuilt architecture, whole neighborhoods yet to be constructed, everything still possible, out of focus somehow. It was incoherent in an exhilaratingly literal sense. In Potsdamer Platz, what you thought was the surface of the Earth was actually a bridge; you were not standing on the Earth at all, or at least not on earth. It was the Anthropocene in miniature, a kind of masquerade, architecture pretending to be geology.

The more that was built, however, the more Berlin seemed to lose this inchoate appeal. The only people with the power to control the rebuilding process seemed to be automobile consortiums and international hotel groups, office-strategy consultants not wizards and ghosts or backpacking writers. Perhaps the city still feels like that to other people now—unfinished, splintered, jagged in a temporal sense, excitingly so, a city with its future still taking shape in the waves of an underground sea—but it seems to me that Berlin’s blur has been misfocused.

In any case, with the caveat that I am in Berlin this week for a very specific research project, so many people I’ve met have pointed to the fall of the Wall as an explosive moment for geophysical surveys in the East. Engineers were hired by the dozen to map, scan, and survey damaged ground left behind by a collapsed imperialist Empire, and the residues of history, its chemical spills and lost foundations, its military bunkers and archaeological remains, needed to be recorded. The ground itself was a subject of study, an historical medium. On top of that, new freeways were being built and expanded, heading east into Poland—and this, too, required geophysical surveys. The future of the region was, briefly, accessible only after looking down. The gateway to the future was terrestrial, a question of gravel and sand, forgotten basements and fallen walls.

The SCUBA divers of the Potsdamer Sea now feel like mascots of that time, dream figures submerged in the waves of a future their work enabled, swimming through historical murk with limited visibility and, air tanks draining, limited time. Their pit was soon filled, the hole annihilated, and the surface of the Earth—which was actually architecture—returned with amnesia.

Underground Cathedrals of Radiation and Zones of Irreversible Strain

[Image: Nevada test site, Google Maps, filtered through Instagram.]

There’s a great line in Tom Zoellner’s book Uranium: War, Energy, and the Rock That Shaped the World where he describes the after-effects of underground nuclear tests. Zoellner writes that, during these tests, “a nuclear bomb buried in a deep shaft underneath a mountain would vaporize the surrounding rock and make a huge cathedral-like space inside the earth, ablaze with radioactivity.”

I thought of Zoellner’s vision of a “huge cathedral-like space inside the earth” recently while reading a paper by Colin N. Waters et al., called “Recognising anthropogenic modification of the subsurface in the geological record.” Among other things, the authors describe the long-term “structural effects of subsurface weapon detonations.”

[Image: Nevada test site, Google Maps, filtered through Instagram.]

They suggest that these detonations produce spaces—such as collapse cones and debris fields—that have “no direct natural analogue,” although they do helpfully contrast weapon-test craters with meteor-impact sites. (The authors also break underground nuclear test sites down into “zones,” which include a “zone of irreversible strain,” which is an amazing phrase.)

The larger purpose of their paper, though, is to look at long-term “signatures” that humans might leave behind in our underground activity, from nuclear tests to mineralogical carbon-capture to deep boreholes to coal mines. Will these signatures still be legible or detectible for humans of the far future? On the whole, their conclusion is not optimistic, suggesting instead that even vast subterranean mines and sites of underground nuclear weapons tests will fade from the terrestrial archive.

“Many of the physical and chemical products of human subsurface intrusion either do not extend far from the source of intrusion, lack long-term persistence as a signal or are not sufficiently distinctive from the products of natural processes to make them uniquely recognisable as of anthropogenic origin,” they write. “But the scope and complexity of the signals have increased greatly over recent decades, both in areal extent and with increasing depths, and seem set to be a fundamental component of our technological expansion. There will be some clues to the geologist of the far-future, when historical knowledge records may not be preserved, that will help resolve the origin.”

[Image: Nevada test site craters, courtesy of the National Nuclear Security Administration Nevada Site Office Photo Library.]

Nevertheless, it is totally fascinating to imagine what future archaeologists might make of Zoellner’s “huge cathedral-like space[s] inside the earth, ablaze with radioactivity,” long after they’ve collapsed, and where sand has been fused into unnatural glass and anomalous traces of radiation can still be found with no reasonable explanation for how they got there.

Could future archaeologists deduce the existence of nuclear weapons from such a landscape? And, if so, would such a suggestion—ancient weapons modeled on the physics of stars—sound rational or vaguely insane?

(Vaguely related: “fossil reactors” underground in Gabon.)

Fungal Lightning

[Image: The mushroom tunnel of Mittagong, photo by Nicola Twilley, via BLDGBLOG.]

“Japanese researchers are closing in on understanding why electrical storms have a positive influence on the growth of some fungi,” Physics World reported last month, with some interesting implications for agriculture.

These electrical storms do not have to be nearby, and they do not even need to be natural: “In a series of experiments, Koichi Takaki at Iwate University and colleagues showed that artificial lightning strikes do not have to directly strike shiitake mushroom cultivation beds to promote growth.” Instead, it seems one can coax mushrooms into fruiting using even just the indirect presence of electrical fields.

As the article explains, “atmospheric electricity has long been known to boost the growth of living things, including plants, insects and rats,” but mushrooms appear to respond even to regional electrical phenomena—for example, when a distant lightning storm rolls by. “In Takaki’s previous studies, yield increases were achieved by running a direct current through a shiitake mushroom log. But Takaki still wondered—why do natural electric storms indirectly influenced [sic] the growth of mushrooms located miles away from the lightning strikes?”

Whether or not power lines or electricity-generation facilities, such as power plants, might also affect—or even catalyze—mushroom growth is not clear.

For now, Takaki is hoping to develop some kind of electrical-stimulation technique for mushroom growth, with an eye on the global food market.

[Image: Nikola Tesla, perhaps daydreaming of mushrooms; courtesy Wellcome Library.]

It is quite astonishing to imagine that, someday, those mushrooms you’re eating in a gourmet pasta dish were grown inside some sort of wild, Nikola Tesla-like electrical cage, half X-Men, half food-technology of the near-future—underground shining domes of fungal power.

[Image: The mushroom tunnel of Mittagong, photo by Nicola Twilley, via BLDGBLOG.]

The opening image of this post, meanwhile, is from a surreal field trip I took back in 2009 with Nicola Twilley to visit the “mushroom tunnel of Mittagong,” a disused rail tunnel in southeast Australia that is—or, as of 2009, was—used as a subterranean mushroom-growth facility. Imagine this tunnel quietly pulsing with electricity in the darkness, humid, strobing, its wet logs fruiting with directed fungi.

Electrical mushroom-control techniques, or where the future of food production merges imperceptibly with the world of H.P. Lovecraft.

[Image: The mushroom tunnel of Mittagong, photo by Nicola Twilley, via BLDGBLOG.]

Read a bit more over at Physics World.

The Deep

[Image: Binnewater Kilns, photo by BLDGBLOG.]

While I was over in New York State last fall, reporting both the “witch houses” piece for The New Yorker and the Middletown High School piece for The Guardian, I stopped off in the town of Rosendale, enticed there by several things I noticed on Google Maps.

[Image: The Rosendale Trestle, photo by BLDGBLOG.]

First was what turned out to be a satirical reference to something called the Geo Refrigeration Crevice, which, even on its own, sounded worth a side-trip. But, in the exact same area, there were also photos of an incredible-looking railway bridge converted to a hiking path that I wanted to walk across; there were these gorgeous, ruined kilns built into the hillside; and there were supposedly huge caves.

How on Earth could I drive past all that without stopping?

[Image: Caves everywhere! Photos by BLDGBLOG.]

Being—perhaps to my Instagram followers’ frustration—an avid hiker, I spent far more time there than I should have, mostly looking down into jagged crevasses that extended past the roots of trees, carpeted in fallen leaves, often hidden beneath great, shipwrecked jumbles of boulders slick with the waters of temporary streams.

I crossed the bridge and was ready to hit the road again, when I saw another site of interest on the map. I decided to walk all the way down and around to something called the Widow Jane Mine.

Having visited many mines in my life, I was expecting something like a small arched hole in the side of a hill, probably guarded with a locked gate. Instead, hiking into the woods past some sort of private home/closed mining museum, the ground still damp from rain, I found myself stunned by the unexpected appearance of these huge, moaning, jaw-like holes blasted into the Earth.

[Image: An entrance to the Widow Jane Mine; photo by BLDGBLOG.]

I walked inside and immediately saw the space was huge: a massive artificial cavern extending far back into the hillside. Excuse my terribly lit iPhone photos here, but these images should give you at least a cursory sense of the mine’s scale.

[Image: Inside the Widow Jane Mine; photos by BLDGBLOG.]

Several things gradually became clear as my eyes adjusted to the darkness.

One, I was totally alone in there and had no artificial illumination beyond my phone, whose light was useless. Two, a great deal of the mine was flooded, meaning that the true extent of its subterranean workings was impossible to gauge; I began fantasizing about returning someday with a canoe and seeing how far back it all really goes.

[Image: Flooding inside the Widow Jane Mine; photo by BLDGBLOG.]

Three, there were plastic lawn chairs everywhere. And they were facing the water.

While the actual explanation for this would later turn out to be both entirely sensible and somewhat anticlimactic—the mine, it turns out, is occasionally used as a performance venue for unusual concerts and events—it was impossible not to fall into a more Lovecraftian fantasy, of people coming here to sit together in the darkness, waiting patiently for something to emerge from the smooth black waters of a flooded mine, perhaps something they themselves have invited to the surface…

[Image: Lawn chairs facing the black waters of a flooded mine; photo by BLDGBLOG.]

In any case, at that point I couldn’t be stopped. While trying to figure out where in the world I had left my rental car, I noticed something else in Google’s satellite view of the area—some sort of abandoned factory complex in the woods—so I headed out to find it.

On the way there, still totally alone and not hiking past a single other person, there was some sort of Blair Witch house set back in the trees, collapsing under vegetation and water damage, with black yawning windows and graffiti everywhere. I believe it is this structure in the satellite pic.

[Image: A creepy, ruined house in the woods, photo by BLDGBLOG.]

Onward I continued, walking till I made it, finally, to this sprawling cement plant facility of some sort just standing there in a clearing.

[Image: Cement world; photos by BLDGBLOG.]

I wandered into the silos, looking at other people’s graffiti…

[Image: “Born to Die”—it’s hard to argue with that, although when I texted this photo to a friend he thought it said “Born to Pie,” which I suppose is even better. Photo by BLDGBLOG.]

…before continuing on again to find my car.

Then, though, one more crazy thing popped up, sort of hidden behind those kilns in the opening photo of this post.

There was a door in the middle of the forest! With a surveillance camera!

[Image: Photos by BLDGBLOG.]

It turns out this door leads down into the massive document-storage caverns of Iron Mountain located nearby, a company whose subterranean archive fever was documented in The New Yorker several years ago (albeit referring to a slightly different location of the firm). I would guess that this is the approximate location of that door.

This was confirmed for me by a man sitting alone in a public works truck back at the Binnewater Kilns parking lot, near my rental car. He was smoking a cigar and listening to the radio with his window rolled down when I walked up to the side of his truck and said, “Hey, man, what’s that door in the woods?”

Void Shaft Electricity

[Image: An engraving of mining, from Diderot’s Encyclopedia.]

A Scottish firm called Gravitricity wants to turn abandoned mine shafts into gravity-driven, underground electrical batteries. Power could be generated and stored, the Guardian reported back in late 2019, “by hoisting and dropping 12,000-ton weights—half the weight of the Statue of Liberty—down disused mine shafts.”

By timing these drops with regional energy demand, Gravitricity’s repurposed mines could act as “breakthrough underground energy-storage systems,” a company spokesperson explains in a video hosted on their site.

“Gravitricity said its system effectively stores energy by using electric winches to hoist the weights to the top of the shaft when there is plenty of renewable energy available, then dropping the weights hundreds of meters down vertical shafts to generate electricity when needed,” the Guardian continues.

[Image: From the Gravitricity website.]

In Subterranea: The Magazine for Subterranea Britannica, where I initially read about this plan, some of the proposal’s inherent design limitations are made clear. “What would be required for the Gravitricity scheme,” SubBrit suggests, “would be very deep, wide, and perhaps brick-lined shafts clear of ladderways, air ducts, cables and the like. On what sort of surface the weights might land, time and time again, is another consideration.”

Of course, this suggests that such shafts could also be deliberately designed and excavated as purpose-built battery-voids stretching down hundreds—thousands—of meters into the Earth, a not-impossible architectural undertaking. Repurposed domestic wells, using smaller weights, could also potentially work for single-home electrical generation, etc. etc.

So here’s to a new generation of proposals for how to perfect such a scheme, proposals that should be awarded bonus points if the resulting gigantic underground cylinders might also function as seismic invisibility cloaks (or “huge arrays of precisely drilled holes and trenches in the ground”).

Secret British Caving Teams and the Mineralogy of Nuclear War

[Image: An otherwise unrelated photo of a cave in China, taken by @PhailMachine, via wallhere].

An interesting story that re-emerged during recent coverage of the Thai cave rescue is that a team of British cavers trapped underground in central Mexico for “more than a week” back in 2004 had been accused of having an ulterior motive.

Of the six men, five were British soldiers, and the crew was rescued not by local emergency crews but by a team flown in from Britain. Nothing about either alleged fact is even remotely suspicious, of course, but, according to local press at the time, “the men had been looking for materials that could be used to make nuclear weapons.”

This was apparently more than just a bar-room rumor: Mexico’s energy minister “waded into the row by saying he would send members of the country’s nuclear research institute into the caves because of rumours the British potholers were looking for uranium deposits.” Things “descended into farce,” according to the Guardian, “amid claims the MoD-sponsored expedition was a secret uranium prospecting exercise and that precise details of the trip were not forwarded to the relevant authorities.”

The conspiracy seems to have begun when someone noticed a particular piece of equipment in a photo of the caving team: “someone spotted radon dosimeters being used. This wasn’t a military training exercise; it was a bunch of guys on holiday, some of whom happened to be in the armed services.”

What the British team would even have done with such materials, if they had found them, including how they would have safely transported uranium out of the underworld in their caving gear—not to mention how they would have exploited this knowledge later, perhaps by developing a vast, illegal, underground mine in the middle of central Mexico?—is difficult to imagine, but, wow, would I like to read that novella.

Six British soldiers descend into the Earth beneath Mexico looking for the infernal materials of war, part of a much larger, secret global mission for subterranean weapons-prospecting, slipping into caves in Central America, the U.S. Southwest, the Namibian desert, and beyond, combining raw international espionage, classified satellite reports, weaponized mineralogy, advanced underground mapping techniques, and every gear-head’s camping equipment fantasy turned up to 11.

La vie minérale

[Image: Photo by Virginie Laganière and Jean-Maxime Dufresne].

A new exhibition featuring photos, videos, and sound installations by Virginie Laganière and Jean-Maxime Dufresne looks at life underground in Helsinki, Finland.

“Imagine a city with more than 400 underground facilities, tunnels that span over hundreds of kilometres and 10 million cubic meters of space carved into old Precambrian bedrock,” they write. These spaces serve as “athletic training sites, energy distribution networks, globalized data centers, archival chambers, a buried church or undisclosed military facilities,” to name only a few of their everyday uses.

The exhibition is up until June 17th, in Québec City. Read more at l’Œil de Poisson.

The Surface of a Terrestrial Sea

[Image: A sinkhole in Wink, Texas, surrounded by oil extraction and wastewater injection infrastructure].

A story I meant to include in my link round-up yesterday is this news item about a “large swath” of active oil well sites in Texas “heaving and sinking at alarming rates.”

In other words, previously solid ground has been turned into a slow-moving terrestrial sea.

“Radar satellite images show significant movement of the ground across a 4000-square-mile area—in one place as much as 40 inches over the past two-and-a-half years,” Phys.org reports. The land is tidal, surging and rolling with artificially induced deformation.

“This region of Texas has been punctured like a pin cushion with oil wells and injection wells since the 1940s and our findings associate that activity with ground movement,” one of the researchers explains.

[Image: Infrastructure near Wink, Texas].

What’s particularly fascinating about this is why it’s alleged to be happening in the first place: a jumbled, chaotic, quasi-architectural mess of boreholes, abandoned pipework, and other artificial pores has begun churning beneath the surface of things and causing slow-motion land collapse.

For example, “The rapid sinking is most likely caused by water leaking through abandoned wells into the Salado formation and dissolving salt layers, threatening possible ground collapse.” Or a nearby region “where significant subsidence from fresh water flowing through cracked well casings, corroded steel pipes and unplugged abandoned wells has been widely reported.”

This utterly weird, anthropocenic assemblage—or should I say anthroposcenic—has also changed the terrain in other ways. Water leaking into an underground salt formation has “created voids,” for example, which have “caused the ground to sink and water to rise from the subsurface, including creating Boehmer Lake, which didn’t exist before 2003.” It’s like upward-falling rain.

The site brings to mind the work of Lebbeus Woods: jammed-up subterranean infrastructure, in a sprawling knot of abandoned and semi-functional machinery, causing the solid earth to behave more like the sea.

Read more at Phys.org.

Seismic Potential Energy

[Image: Photo by BLDGBLOG].

I got to hike with my friend Wayne last week through a place called the Devil’s Punchbowl, initially by way of a trail out and back from a very Caspar David Friedrich-ian overlook called the Devil’s Chair.

[Image: Wayne, Rückenfigur; photo by BLDGBLOG].

The Punchbowl more or less lies astride the San Andreas Fault, and the Devil’s Chair, in particular, surveils this violently serrated landscape, like gazing out across exposed rows of jagged teeth—terra dentata—or perhaps the angled waves of a frozen Hokusai painting. The entire place seems charged with the seismic potential energy of an impending earthquake.

[Image: It is difficult to get a sense of scale from this image, but this geological feature alone is at least 100 feet in height, and it is only one of hundreds; photo by BLDGBLOG].

The rocks themselves are enormous, splintered and looming sometimes hundreds of feet over your head, and in the heat-haze they almost seem buoyant, subtly bobbing up and down with your footsteps like the tips of drifting icebergs.

[Image: Looking out at the Devil’s Chair; photo by BLDGBLOG].

In fact, we spent the better part of an hour wondering aloud how geologists could someday cause massive underground rock formations such as these to rise to the surface of the Earth, like shipwrecks pulled from the bottom of the sea. Rather than go to the minerals, in other words, geologists could simply bring the minerals to them.

[Image: Photo by BLDGBLOG].

Because of the angles of the rocks, however, it’s remarkably easy to hike out amidst them, into open, valley-like groins that have been produced by tens of thousands of years’ worth of rainfall and erosion; once there, you can just scramble up the sides, skirting past serpentine pores and small caves that seem like perfect resting spaces for snakes, till you reach sheer drop-offs at the top.

There, views open up of more and more—and more—of these same tilted rocks, leading on along the fault, marking the dividing line between continental plates and tempting even the most exhausted hiker further into the landscape. The problem with these sorts of cresting views is that they become addictive.

[Image: Wayne, panoramically doubled; photo by BLDGBLOG].

At the end of the day, we swung by the monastic community at St. Andrew’s Abbey, which is located essentially in the middle of the San Andreas Fault. Those of you who have read David Ulin’s book The Myth of Solid Ground will recall the strange relationship Ulin explores connecting superstition, faith, folk science, and popular seismology amongst people living in an earthquake zone.

Even more specifically, you might recall a man Ulin mentions who once claimed that, hidden “in the pattern of the L.A freeway system, there is an apparition of a dove whose presence serves to restrain ‘the forces of the San Andreas fault’.”

This is scientifically cringeworthy, to be sure, but it is nonetheless interesting in revealing how contemporary infrastructure can become wrapped up in emergent mythologies of how the world (supposedly) works.

The idea, then, of a rogue seismic abbey quietly established in a remote mountainous region of California “to restrain ‘the forces of the San Andreas Fault’”—which, to be clear, is not the professed purpose of St. Andrew’s Abbey—is an idea worth exploring in more detail, in another medium. Imagine monks, praying every night to keep the rocks below them still, titanic geological forces lulled into a state of quiescent slumber.

[Image: Vasquez Rocks at sunset; photo by BLDGBLOG].

In fact, I lied: at the actual end of the day, Wayne and I split up and I drove back to Los Angeles alone by way of a sunset hike at Vasquez Rocks, a place familiar to Star Trek fans, where rock formations nearly identical to—but also less impressive than—the Devil’s Punchbowl breach the surface of the Earth like dorsal fins. The views, as you’d expect, were spectacular.

Both parks—not to mention St. Andrew’s Abbey—are within easy driving distance of Los Angeles, and both are worth a visit.

Extraction Town

[Image: Empty homes in Picher, Oklahoma; photo by BLDGBLOG].

On the way west, I managed to stop by the town of Picher, Oklahoma, the subject of a new exhibition featuring photographs by Todd Stewart.

Picher is something like the Centralia of Oklahoma, where Centralia is the town in Pennsylvania that has been slowly abandoned over a generation due to coal mine fires burning away beneath its streets. In Picher, however, it’s not coal smoke but collapsing lead mines that have led to a forced buy-out and evacuation, a haunting process tragically assisted in 2008 when a massive tornado hit town, ripping apart many of its remaining houses and buildings.

Today, Picher is not entirely empty, but it has become more of a macabre curiosity on the state’s border with Kansas, its quiet streets overgrown and surrounded by looming piles of “chat,” or mine tailings, alpine forms that give the landscape its toxic profile.

[Image: Picher, surrounded by its toxic artificial landforms; via Google Maps].

The Washington Post visited the town back in 2007. “Signs of Picher’s impending death are everywhere,” they wrote at the time. “Many stores along Highway 69, the town’s main street, are empty, their windows coated with a layer of grime, virtually concealing the abandoned merchandise still on display. Trucks traveling along the highway are diverted around Picher for fear that the hollowed-out mines under the town would cause the streets to collapse under the weight of big rigs.” Note that this was written a year before the tornado.

Oklahoma native Allison Meier has written up Todd Stewart’s exhibition, including a longer, horrific backstory to the town, with red rivers of acidic water “belching” up from abandoned mines, kids playing in sandboxes of powdered lead, and horses poisoned by the runoff.

“The poisoning of Picher may seem like a local story,” Meier writes, “and, indeed, remains little known on a national level. Yet the state of Oklahoma continues to practice environmentally hazardous extraction, including fracking for gas. And in the United States, the promotion of toxic industry—even if it results in the destruction of the very place it is supporting—endures.”

Here’s a link to the actual exhibition, and you can buy a copy of Todd Stewart’s book here. Wired also visited Picher a few years back, if you’re looking for more.

Under the Dome

[Image: Courtesy U.S. Department of the Interior Bureau of Ocean Energy Management (BOEM)].

A gigapixel bathymetric map of the Gulf of Mexico’s seabed has been released, and it’s incredible. The newly achieved level of detail is almost hard to believe.

[Images: Courtesy U.S. Department of the Interior Bureau of Ocean Energy Management (BOEM)].

The geology of the region is “driven not by plate tectonics but by the movement of subsurface bodies of salt,” Eos reported last week. “Salt deposits, a remnant of an ocean that existed some 200 million years ago, behave in a certain way when overlain by heavy sediments. They compact, deform, squeeze into cracks, and balloon into overlying material.”

This means that the bottom of the Gulf of Mexico “is a terrain continually in flux.”

How the salt got there is the subject of a long but fascinating description at Eos.

It is hypothesized that the salt precipitated out of hypersaline seawater when Africa and South America pulled away from North America during the Triassic and Jurassic, some 200 million years ago. The [Gulf of Mexico] was initially an enclosed, restricted basin into which seawater infiltrated and then evaporated in an arid climate, causing the hypersalinity (similar to what happened in the Great Salt Lake in Utah and the Dead Sea between Israel and Jordan).

Salt filled the basin to depths of thousands of meters until it was opened to the ancestral Atlantic Ocean and consequently regained open marine circulation and normal salinities. As geologic time progressed, river deltas and marine microfossils deposited thousands more meters of sediments into the basin, atop the thick layer of salt.

The salt, subjected to the immense pressure and heat of being buried kilometers deep, deformed like putty over time, oozing upward toward the seafloor. The moving salt fractured and faulted the overlying brittle sediments, in turn creating natural pathways for deep oil and gas to seep upward through the cracks and form reservoirs within shallower geologic layers.

These otherwise invisible landscape features “oozing upward” from beneath the seabed are known as salt domes, and they are not only found at the bottom of the Gulf of Mexico.

[Image: Avery Island, Louisiana, archived by the U.S. Library of Congress].

The black and white photos you see here are from a salt mine on Avery Island, Louisiana, archived by the U.S. Library of Congress. The photos date back as far as 1900, and they’re gorgeous.

[Image: Avery Island, Louisiana, archived by the U.S. Library of Congress].

This is what it looks like inside those salt domes, you might way, once industrially equipped human beings have carved wormlike topological spaces into the deformed, ballooning salt deposits of the region.

[Image: Avery Island, Louisiana, archived by the U.S. Library of Congress].

Obviously, the Gulf of Mexico is not the only salt-rich region of the United States; there is a huge salt mine beneath the city of Detroit, for example, and the nation’s first nuclear waste repository, the Waste Isolation Pilot Plant, or WIPP—which my wife and I had the surreal pleasure of visiting in person back in 2012—is dug into a huge underground salt deposit near the New Mexico/Texas border.

[Image: Inside WIPP; photo by Nicola Twilley].

Nonetheless, the Louisiana/Gulf of Mexico salt dome region has lent itself to some particularly provocative landscape myths.

You might recall, for example, the story of Lake Peigneur, an inland body of water that was almost entirely drained from below when a Texaco drilling rig accidentally punctured a salt dome beneath the lake.

This led to the sight of a rapid, Edgar Allan Poe-like maelström of swirling water disappearing into the abyss, pulling no fewer than eleven barges into the terrestrial deep.

[Image: Avery Island, Louisiana, archived by the U.S. Library of Congress].

But there is also the story of Bayou Corne, one of my favorite conspiracy theories of all time.

[Images: Avery Island, Louisiana, archived by the U.S. Library of Congress].

As the New York Times reported back in 2013, “in the predawn blackness of Aug. 3, 2012, the earth opened up—a voracious maw 325 feet across and hundreds of feet deep, swallowing 100-foot trees, guzzling water from adjacent swamps and belching methane from a thousand feet or more beneath the surface.”

One resident of the area is quoted as saying, “I think I caught a glimpse of hell in it.”

More than a year after it appeared, the Bayou Corne sinkhole is about 25 acres and still growing, almost as big as 20 football fields, lazily biting off chunks of forest and creeping hungrily toward an earthen berm built to contain its oily waters. It has its own Facebook page and its own groupies, conspiracy theorists who insist the pit is somehow linked to the Gulf of Mexico 50 miles south and the earthquake-prone New Madrid fault 450 miles north. It has confounded geologists who have struggled to explain this scar in the earth.

To oversimplify things, the overall theory—that is, the conspiratorial part of all this—is that the entire landscape of the Gulf region is on the verge of subterranean dissolution. The very salt deposits so beautifully mapped by the Bureau of Ocean Energy Management are all lined up for eventual flooding.

As this vast underground landscape of salt dissolves, everything from east Texas to west Florida will be sucked down into the abyss.

[Image: Avery Island, Louisiana, archived by the U.S. Library of Congress].

It’s unlikely that this will happen, I should say. You can sleep well at night.

In the meantime, the sorts of salt-mining operations depicted here in these photographs have carved their worming, subterranean way into the warped terrains of salt that dynamically ooze their way up to the surface from geological prehistory.

[Image: Avery Island, Louisiana, archived by the U.S. Library of Congress].

Be sure to check out the full gigapixel BOEM map, and the helpful write-up over at Eos is worth a read, as well. As for the Bayou Corne conspiracy—I suppose we’ll just have to wait.

(Bathymetric maps spotted via Chris Rowan; salt mine photos originally spotted a very long time ago via Attila Nagy).