PoMo- Mytho- Geo-

[Image: “Model of an Earth Fastener on the Delphi Fault (Temple of Apollo)” (2019) by Kylie White; photo courtesy Moskowitz Bayse.]

Artist Kylie White has two new pieces up in a group show here in Los Angeles, called Grammars of Creation, on display at Moskowitz Bayse till March 16th, which I will return to in a second.

White had a great solo show at the same gallery almost exactly a year ago, featuring a series of geological faults modeled in richly veined, colored marble Most also incorporated brass details, acting as so-called “Earth fasteners.”

[Images: From Six Significant Landscapes by Kylie White; photos courtesy Moskowitz Bayse.]

Gallery text explained at the time that White’s works “are at once sculptures, scale models, geologic diagrams, and proposals; each depicts an active fault line, a place of displaced terrain due to tectonic movement.”

The “proposal” in each work, of course, would be the fasteners: metal implants of a sort meant to span the rift of an open fault.

[Image: “Model of Earth Fastener on a Transform Fault; 1”=10” (2017) by Kylie White; note that this piece was not featured in Six Significant Landscapes. Photo courtesy Moskowitz Bayse.]

White’s fasteners seemed to suggest at least two things simultaneously: that perhaps we could fix the Earth’s surface in place, if only we had the means to stop faults from breaking open, but also that human interventions such as these, in otherwise colossal planetary landscapes, would be trivial at best, more sculptural than scientific, just temporary installations not permanent features of a changing continent.

[Image: From Six Significant Landscapes by Kylie White; photo courtesy Moskowitz Bayse.]

As I struggled to explain to my friends, however, while describing White’s work, the visual effect was strangely postmodern, almost tongue-in-cheek, as if her sculptures—all green marble blocks and inlaid brass—could have passed for avant-garde luxury furniture items from the 1980s (and, to be clear, I mean this in a good way: imagine scientific models masquerading as luxury goods).

[Images: Details from Six Significant Landscapes by Kylie White; photos by BLDGBLOG.]

All of which means I sort of laughed when I saw these more recent works that seem to take this postmodern aesthetic to a new height, complete with two fault models mounted atop faux-Greek columns.

[Image: “Model of an Earth Fastener on the Hierapolis Fault (Plutonion)” (2019) by Kylie White; photo courtesy Moskowitz Bayse.]

It’s like plate tectonics meets Learning From Las Vegas, by way of Greek mythology.

Because the columns are also a fitting reference to the pieces’ own subject matter: one, seen at the top of this post, is called “Model of an Earth Fastener on the Delphi Fault (Temple of Apollo)” and the other, immediately above, is “Model of an Earth Fastener on the Hierapolis Fault (Plutonion).” They perhaps suggest an entirely new approach to natural history museum displays—boldly gridded rooms filled with heroic blocks of the Earth’s surface, bathed in neon. Pomotectonics.

In any case, more information about the show is available at Moskowitz Bayse. It closes on March 16th, 2020, although White apparently has another, currently untitled solo show coming up in 2021.

Walker Lane Redux

It’s been an interesting few days here in Southern California, with several large earthquakes and an ensuing aftershock sequence out in the desert near Ridgecrest. Ridgecrest, of course, is at the very southern edge of the Walker Lane—more properly part of the Eastern California Shear Zone—a region of the country that runs broadly northwest along the California/Nevada state border that I covered at length for the May 2019 issue of Wired.

[Image: My own loose sketch of the Walker Lane, using Google Maps].

To make a story short, a handful of geologists have speculated, at least since the late 1980s, that the San Andreas Fault could actually be dying out over time—that the San Andreas is jammed up in a place called the “Big Bend,” near the town of Frazier Park, and that it is thus losing its capacity for large earthquakes.

As a result, all of that unreleased seismic strain has to go somewhere, and there is growing evidence—paleoseismic data, LiDAR surveys, GPS geodesy—that the pent-up strain has been migrating deep inland, looking for a new place to break.

That new route—bypassing the San Andreas Fault altogether—is the Walker Lane (and its southern continuation into the Mojave Desert, known as the Eastern California Shear Zone).

What this might mean—and one of the reasons I’m so fascinated by this idea—is that a new continental margin could be forming in the Eastern Sierra, near the California/Nevada state border, a future line of breakage between the Pacific and North American tectonic plates.

If this is true, the Pacific Ocean will someday flood north from the Gulf of California all the way past Reno—but, importantly, this will happen over the course of many millions of years (not due to one catastrophic earthquake). This means that no humans alive today—in fact, I would guess, no humans at all—will see the final result. If human civilization as we know it is roughly 15,000 years old, then civilization could rise and fall nearly 700 times before we even get to 10 million years, let alone 15 million or 20.

In any case, these recent big quakes out near Ridgecrest do not require that the most extreme Walker Lane scenario be true—that is, they do not require that the Walker Lane is an incipient continental margin. However, they do offer compelling and timely evidence that the Walker Lane region is, at the very least, more seismically active than its residents might want to believe.

I could go on at great length about all this, but, instead, I just want to point out one cool thing: the far northern route of the Walker Lane remains something of a mystery. If you’ve read the Wired piece, you’ll know that, for the Walker Lane to become a future continental edge, it must eventually rip back through California and southeastern Oregon to reach the sea. However, the route it might take—basically, from Pyramid Lake to the Pacific—is unclear, to say the least.

One place that came up several times while I was researching my Wired article was the northern California town of Susanville. Susanville is apparently a promising place for study, as geologists might find emergent faults there that could reveal the future path of the Walker Lane.

If you draw a straight line from the Reno/Pyramid Lake region through Susanville and keep going, you’ll soon hit a town called Fall River Mills. Interestingly, following the long aftershock sequence of these Ridgecrest quakes, there was a small quake in Fall River Mills this morning.

While seeing patterns in randomness—let alone drawing magical straight lines across the landscape—is the origin of conspiracy theory and the bane of serious scientific thinking, it is, nevertheless, interesting to note that the apparently linear nature of the Walker Lane could very well continue through Fall River Mills.

[Image: The Ridgecrest quakes and their aftershocks seem to support the idea of a linear connection along the Walker Lane; note that I have added a straight orange line in the bottom image, purely to indicate the very broad location of the Walker Lane].

While we’re on the subject, it is also interesting to see that, if you continue that same line just a little bit further, connecting Pyramid Lake to Susanville to Fall River Mills, you will hit Mt. Shasta, an active volcano in northern California. Again, if you’ve read the Wired piece, you’ll know that volcanoes seem to have played an interesting role in the early formation of the San Andreas Fault millions of years ago.

In any case, in cautious summary, I should emphasize that I am just an armchair enthusiast for the Walker Lane scenario, not a geologist; although I wrote a feature article about the Walker Lane, I am by no means an expert and it would be irresponsible of me to suggest anything here as scientific fact. It does interest me, though, that aftershocks appear to be illuminating a pretty dead-linear path northwest up the Walker Lane, including into regions where its future route are not yet clear.

Insofar as the locations of these aftershocks can be taken as scientifically relevant—not just a seismic coincidence—the next few weeks could perhaps offer some intriguing suggestions for the Walker Lane’s next steps.

Fault Lines/Point Clouds

[Image: Otherwise unrelated satellite view of the Pyramid Lake Fault (diagonal line from top left to bottom right), via Google Maps].

As a quick update to the Walker Lane post, there are some Walker Lane fault system LiDAR data sets available for download, if you’re able to play around with that sort of thing.