They Come From Everywhere: An Interview with Mike Elizalde

Many of today’s most original and bizarre visions of alternative worlds and landscapes come from the workshops of Hollywood effects studios. Behind the scenes of nondescript San Fernando Valley offices and warehouse spaces (if not outside California altogether, in many of the other nodes in the ever-expanding global network of cinematic effects production, from suburban London to Wellington, New Zealand), lurk the multidisciplinary teams whose job it is to create tomorrow’s monsters.

Mike Elizalde of Spectral Motion applies make-up to actor Ron Perlman, as Hellboy.

Spectral Motion, the effects house responsible for some of the most technically intricate and physically stunning animatronic creatures seen in feature film today, is no exception. Based in a small strip of anonymous one-story warehouse spaces squeezed in between a freeway and rail tracks, and overshadowed by a gargantuan Home Depot, Spectral Motion has developed monsters, effects, and other mechanical grotesqueries that have since become household nightmares, if not names.

Since its founding, by Mike & Mary Elizalde in 1994, the firm has worked on such films as Hellboy & Hellboy II: The Golden Army, Looper, Attack the Block, Blade 2 & Blade: Trinity, X-Men: First Class, The Watch, and this summer’s highly anticipated Pacific Rim.



This winter, while out in Los Angeles on a trip for Venue, I had the enormous pleasure of stopping by Spectral Motion with Nicola Twilley in order to interview Mike Elizalde, CEO of Spectral Motion, on a cloudy day in Glendale to talk all things monstrous and disturbing. To a certain extent, this interview thus forms the second part in a series with BLDGBLOG’s earlier interview with Hellboy creator Mike Mignola, and the present conversation, reproduced below, pairs well with Mignola’s thoughts on what we might call landscapes of monstrosity.

Our conversation with Elizalde ranged from the fine line that separates the grotesque and the alien to the possibility of planetary-scale creatures made using tweaked geotextiles, via the price of yak hair and John Carpenter’s now-legendary Antarctic thriller, The Thing.

Mike Elizalde behind his desk at Spectral Motion.

Elizalde, a good-humored conversationalist, not only patiently answered our many questions—with a head cold, no less—but then took us on a tour through Spectral Motion‘s surprisingly large workshop. We saw miniature zombie heads emerging from latex molds (destined for a film project by Elizalde’s own son), costumes being sewn by a technician named Claire Flewin for an upcoming attraction at Disneyland, and a bewildering variety of body parts—heads, torsos, claws, and even a very hairy rubber chest once worn by footballer Vinnie Jones in X-Men: The Last Stand—that were either awaiting, or had already performed, their celluloid magic.

The visit ended with a screening of Spectral Motion‘s greatest hits, so to speak, with in-house photographer and archivist Kevin McTurk—a chance to see the company’s creations in their natural habitat. We walked back out into the flat light and beige parking lots of the Valley, a landscape enlivened by our heightened sense of the combination of close observation and inspired distortion required to transform the everyday into the grotesque.

• • •

Geoff Manaugh: I’d love to start with the most basic question of all: how would you describe Spectral Motion and what the company does?

Mike Elizalde: We are principally a prosthetics, animatronics, and special effects creature studio, but we are also a multifaceted design studio. We do a lot of different kinds of work. Most recently, for example, in partnership with one of my long-time colleagues, Mark Setrakian, we built anthropomorphic bipedal hydraulic robots that engage in battle, for a reality show for Syfy. It’s called RCLRobot Combat League. It’s pretty astounding what these machines can do, including what they can do to each other.

Battling it out in Robot Combat League with two robots—”eight-feet tall, state-of-the-art humanoid robots controlled by human ‘robo-jockeys,'” in the words of Syfy—designed by Mark Setrakian of Spectral Motion.

Nicola Twilley: Are the robot battles choreographed, or do you genuinely not know which robot will win?

Elizalde: Oh, no, absolutely—it’s a contest. It really is about which robot will emerge as the victorious contender.

RCL is not only one of our most recent projects, but it also shows that, here at the studio, we can do everything from a very delicate prosthetic application on an actor, to an animatronic character in a film, to something that’s completely out of our comfort zone—like building battling robots.

I always tell people that, if they come in here with a drawing of a car, we could build that car. It is a very diverse group that we work with: artists, technicians, and, of course, we use all the available or cutting-edge technologies out there in the world to realize whatever it is that we are required to make.

Mike Elizalde of Spectral Motion shows us a creature.

Manaugh: What kind of design briefs come to you? Also, when a client comes to you, typically how detailed or amorphous is their request?

Elizalde: Sometimes it is very vague. But, typically, what happens is we’re approached with a script for a project. Our job is to go through the script and create a breakdown and, ultimately, a budget based on those breakdowns. We take whatever we think we should build for that script and we make suggestions as to how each thing should look—what should move, what the design should be, and so on.

Other times, we’ll be working with a director who’s very involved and who maybe even has some technical knowledge of what we do—especially someone like Guillermo del Toro. He’s completely savvy about what we do because he used to own a creature shop of his own, so working with someone like him is much more collaborative; he comes to us with a much more clear idea of what he wants to see in his films. Lots of times, he’ll even show us an illustration he’s done. He’s the first one to say, “I’m not an artist!” But he really is. He’s quite gifted.

The creature known as Wink from Hellboy II: The Golden Army, designed by Spectral Motion, including a shot of the mechanical understructure used inside Wink’s left hand.

So he’ll bring us his illustrations and say, you know, “You tell me if it’s going to be a puppet, an animatronic puppet, or a creature suit that an actor can wear.” And that’s where our knowhow comes in. That’s how it evolves.

There are also times—with the robot show, for example—where they know exactly what they need but they don’t know how to achieve it. In those cases, they come to us to do that for them.

Twilley: Can you talk us through one of the projects you’ve worked on where you had to create your vision based solely on what’s in the script, rather than more collaborative work with the director? What’s that process like?

Elizalde: Well, I’d actually say that ninety percent of our work is that way. For most of the projects we work on, we do, in fact, just get a script and the director says, “Show me what this looks like.” But we love that challenge. It’s really fun for us to get into the artistic side of developing what the appearance of something will end up looking like.

We had a lot of fun working with a director named Tommy Wirkola, for example, who directed Hansel & Gretel: Witch Hunters. He was the director of Dead Snow, a really strange Norwegian film that involved this group of young kids who go off to a cabin where they’re hunted down by a hoard of horrifying zombie Nazi monsters. It’s really grisly.

Anyway, although Tommy did have really good ideas about what he wanted his characters to look like for Hansel & Gretel, there were certain characters whose descriptions were much more vague—also because there was such a broad scope of characters in the film. So they did rely on us to come up with a lot of different looks based on loose descriptions. In the end, the principal characters in the film were total collaborations between Tommy, myself, and Kevin Messick, the producer, and the rest of my team here at Spectral Motion, of course.

I’d say that’s a good example of both worlds, where you have some clear ideas about a few characters, but, for another group of characters, there really isn’t a whole lot of information or a detailed description. You have to fill in a lot of blanks.

Mark Setrakian, Thom Floutz , and Mike Elizalde of Spectral Motion pose with Sammael from Hellboy.

Twilley: What kinds of things do you look for in a script to give you a clue about how a character might work—or is that something that simply comes out when you’re sketching or modeling?

Elizalde: In a script, we basically know what we’re looking for: “Enter a monster.” We know that’s what we’re going be doing, so we look for those moments in the script. Sometimes there’s a brief description—something like, “the monster’s leathery hide covered in tentacles.” That kind of stuff gives us an immediate visual as to what we want to create. Then we explore it with both two-dimensional artwork and three-dimensional artwork, and both digital and physical.

In fact [gestures at desk], these are some examples of two-dimensional artwork that we’ve created to show what a character will look like. This [points to statuette above desk] is a maquette for one of the characters in Hellboy II—the Angel of Death. This was realized at this scale so that del Toro could see it and say, “That’s it. That’s what I want. Build that.” This actually began as an illustration that Guillermo did in his sketchbook, a very meticulous and beautiful illustration that he came to us with.

The Angel of Death from Hellboy II: The Golden Army.

But that’s the process: illustration and then maquette. Sometimes, though, we’ll do a 3D illustration in the computer before we go to the next stage, just to be able to look at something virtually, in three dimensions, and to examine it a little bit more before we invest the energy into creating a full-blown maquette.

The maquette, as a tool, can be very essential for us, because it allows us to work out any bugs that might be happening on a larger scale, design-wise. Practically speaking, it doesn’t give us a lot of information as to how the wings are going to work, or how it’s going to function; but it does tell us that a human being could actually be inside of it and that it could actually work as a full-scale creature. It’s essential for those reasons.

Simon, the mechanical bird from Your Highness, before paint has been applied, revealing the internal workings.

Because you can show a director a drawing, and it might look really terrific—but, when it comes to actually making it, in a practical application at scale, sometimes the drawing just doesn’t translate. Sometimes you need the maquette to help describe what the finished piece will look like.

Manaugh: You mentioned animatronics and puppeteering. We were just up at the Jet Propulsion Lab in Pasadena yesterday afternoon, talking to them about how they program certain amounts of autonomy into their instruments, especially if it’s something that they’re putting on Mars. It has to be able to act on its own, at times, because it doesn’t have enough time to wait for the command signal from us back on Earth. I’m curious, especially with something like the robot combat show, how much autonomy you can build into a piece. Can you create something that you just switch on and let go, so that it functions as a kind of autonomous or even artificially intelligent film prop?

Elizalde: It really depends on the application. For example, when we’re filming something, a lot of times there’s a spontaneity that’s required. Sometimes actors like to ad lib a little bit. If we need to react to something that an actor is saying via a puppet—an animatronic puppet—then that live performance really is required. But we always have the option of going to a programmable setup, one where we can have a specific set of parameters, performance-wise, to create a specific scene.

For live performances on a stage, we’d probably want to program that with the ability to switch over to manual, if required. But, if it’s scripted—if it’s a beat-by-beat performance—then we know that can be programmable. We can turn on the switch and let it go. In the middle of that, you can then stop it, and have a live show, with puppeteers in the background filling in the blanks of whatever that performance is, and then you can continue with the recorded or programmed performance.

It really goes back and forth, depending on what it is the people who are putting on the production need.

The mechanical skull under structure of the Ivan the Corpse from Hellboy.

Twilley: That’s an interesting point—the idea of how a live actor responds to your creatures. Have there been any surprises in how an actor has responded, or do they all tend to know what they’re getting into by the time you’re filming?

Elizalde: They do know what they’re getting into, but it’s always rewarding to have an actor go over to the thing that you built, and stare at it, and say, “Oh, my God! Look at that thing!” They can feed off of that. I think they are able to create a more layered performance, with a lot more depth in their reactions to something if it’s actually there—if it’s present, if it has life to it, and it’s tactile.

A lot of times people turn to digital solutions. That’s also good, if the application is correct. But, you know, a lot of directors that we talk to are of the mind that a practical effect is far better for exactly that reason—because the actor does have a co-actor to work with, to play off of, and to have feelings about.

That’s one of the things that keeps us going. And, the fact is, with this business, no matter what walks through that door we know that it’s going to be a completely different set of challenges from the last thing that we did.

Mechanical puppet of Drake from a Sprite commercial. Scott Millenbaugh and Jurgen Heimann of Spectral Motion are seen here making mechanical adjustments.

Manaugh: About six years ago, I interviewed a guy who did concept art for the Star Wars prequels, and he had a kind of pet obsession with building upside-down skyscrapers—that is, skyscrapers that grew downwards like stalactites. He kept trying to get them into a movie. He would build all of these amazing 3D models and show them to the director, and the director was always excited—but then he’d turn the model upside-down and say, “Let’s do it like this!” So all the upside-down skyscrapers would just be right-side up again. In any case, this artist was then working on the recent Star Trek reboot, and there’s a brief moment where you see upside-down skyscrapers on the planet Vulcan. It’s only on screen for about a second and a half, but he finally did it—he got his upside-down skyscrapers into a film.

Elizalde: [laughs] But, ohhh! For half-a-second! [laughter]

Manaugh: Exactly. Anyway, in the context of what you do here at Spectral Motion, I’m curious if there is something like that, that you’ve been trying to get into a movie for the last few years but that just never quite makes it. A specific monster, or a new material, or even a particular way of moving, that keeps getting rejected.

Elizalde: That’s an interesting question. [pauses] You know, I’d have to say no. I’d say it seems like the more freely we think, the better the result is. So it’s quite the contrary: most of the stuff we suggest actually does make it into the film, because it’s something that someone else didn’t think about. Or perhaps we’ve added some movement to a character, or we’ve brought something that will elicit a more visceral reaction from the audience—bubbly skin, for instance, or cilia that wiggle around.

I don’t think I’ve really encountered a situation where I thought something would look great, but, when I brought it to a director, they said, “Nah—I don’t think that’s going to go. Let’s not try that.” They always seem to say, “Let’s try it! It sounds cool!”

Mike Elizalde applies some last-minute touch-ups to actor Ron Perlman on the set of Hellboy.

We really haven’t had a whole lot of frustration—maybe only when it turns into a very large committee making a decision on the film. Then, I suppose, a certain degree of frustration is more typical. But that happens in every industry, not just ours: the more people are involved in deciding something, the more difficult it is to get a clear image of what it is we’re supposed to do.

Manaugh: When we first spoke to set-up this interview, I mentioned that we’d be touring the landfill over at Puente Hills this morning, on our way here to meet you—it’s the biggest active landfill in the United States. What’s interesting is that it’s not only absolutely massive, it’s also semi-robotic, in the sense that the entire facility—the entire landscape—is a kind of mechanical device made from methane vents and sensors and geotextiles, and it grows everyday by what they call a “cell.” A “cell” is one square-acre, compacted twenty feet deep with trash. Everyday!

But I mention this because, during our visit there, I almost had the feeling of standing on top of a mountain-sized creature designed by Spectral Motion—a strange, half-living, half-mechanical monstrosity in the heart of the city, growing new “cells” every day of its existence. It’s like something out of Hellboy II. So I’m curious about the possibilities of a kind of landscape-scale creature—how big these things can get before you need to rely on CGI. Is it possible to go up to that scale, or what are the technical or budgetary limitations?

A Tyrannosaurus rex in a bathtub in the back prep rooms of Spectral Motion.

Elizalde: We can’t build mountains yet but, absolutely, we can go way up in scale! Many times, of course, we have to rely, at least to some degree, on digital effects—but that just makes our job easier, by extending what is possible, practically, and completing it cinematically, on screen, at a much larger scale.

For example, on Pacific Rim, Guillermo del Toro’s new film that comes out this summer, we designed what are called Jaegers. They’re basically just giant robots. And we also designed the Kaiju, the monsters in the film. First, we created maquettes, just like the ones here, and we made several versions of each to reflect the final designs you’ll see in the film. Those were taken and re-created digitally so they could be realized at a much larger scale.

To that degree, we can create something enormous. There’s a maquette around here somewhere of a character we designed for the first Hellboy movie—actually, there are two of them. One of those characters is massive—about the size of a ten-story building—and the other one is much, much bigger. It’s the size of… I don’t know, a small asteroid. There really is no limit to the scale, provided we can rely on a visual effects company to help us realize our ultimate goal.

The animatronic jaws and bioluminescent teeth (top) of the alien creature (bottom) designed by Spectral Motion for Attack the Block.

But going the opposite direction, scale-wise, is also something that interests us. We can make something incredibly tiny, depending on what the film requires. There is no limit in one direction or the other as to what can be achieved, especially with the power of extension through digital effects.

Manaugh: Just to continue, briefly, with the Puente Hills reference, something that we’ve been interested in for the past few years is the design of geotextiles, where companies like TenCate in the Netherlands are producing what are, effectively, landscape-scale blankets made from high-quality mesh, used to stabilize levees or to add support to the sides of landfills. But some of these geotextiles are even now getting electromagnetic sensors embedded in them, and there’s even the possibility of a geotextile someday being given mechanical motion—so it’s just fascinating, I think, to imagine what you guys could do with a kind of monstrous or demonic geotextile, as if the surface of the earth could rise up as a monster in Hellboy III.

Elizalde: [laughs] Well, now that I know about it, I’ll start looking into it!

Twilley: Aside from scale, we’re also curious about the nature of monsters in general. This is a pretty huge question, but what is a monster? What makes something monstrous or grotesque? There seems to be such a fine line between something that is alien—and thus frightening—and something that is so alienating it’s basically unrecognizable, and thus not threatening at all.

Elizalde: Exactly. Right, right.

Twilley: So how do you find that sweet spot—and, also, how has that sweet spot changed over time, at least since you’ve been in the business? Are new things becoming monstrous?

Elizalde: Well, I think my definition of a monster is simply a distortion: something that maybe looks close to a human being, for example, but there’s something wrong. It can be something slight, something subtle—like an eye that’s just slightly out of place—that makes a monster. Even a little, disturbing thing like that can frighten you.

So it doesn’t take a lot to push things to the limit of what I would consider the grotesque or the monstrous. At that point, it runs the gamut from the most bizarre and unimaginable things that you might read in an H. P. Lovecraft story to something simple, like a tarantula with a human head. Now there’s something to make me scream! I think there’s a very broad range. But you’re right: it’s a huge question.

Mark Setrakian of Spectral Motion working on the animatronic head of Edward the Troll from Hansel and Gretel: Witch Hunters.

And sometimes the monstrous defies definition. I guess it’s more of a primal reaction—something you can’t quite put your finger on or describe, but something that makes you feel uneasy. It makes you feel uncomfortable or frightened. A distortion of what is natural, or what you perceive as natural, something outside what you think is the order of things—or outside what you think is acceptable within what we’ve come to recognize as natural things—then that’s a monster. That’s a monstrous thing.

Do you recall seeing John Carpenter’s The Thing?

Manaugh: It’s one of my favorite movies.

Elizalde: My goodness, the stuff in that film is the stuff of nightmares. It really is brilliantly executed, and it’s a great inspiration to all of the people in our industry who love monsters, and to all the fans all over the world who love monstrous things.

Actor Ron Perlman gets make-up applied for his role as Hellboy, as director Guillermo del Toro and Mike Elizalde from Spectral Motion stop in for a visit.

Twilley: Have there been trends over time? In other words, do you find directors look for a particular kind of monster at a particular moment in time?

Elizalde: I do think there are trends—although I think it’s mainly that there’s a tendency here in Hollywood where somebody hears a rumor that someone down the street is building a film around this particular creature, so that guy’s now got to write a similar script to compete. But sometimes the trends are set by something groundbreaking, like The Thing. Once that movie was released, everybody paid attention and a whole new area of exploration became available to create amazing moments in cinema.

Those are the real trends, you know. It’s a symbiosis that happens between the artistic community and the technological community, and it’s how it keeps advancing. It’s how it keeps growing. And it keeps us excited about what we do. We feed off of each other.

Technician Claire Flewin uses her hand to demonstrate how yak hair looks stretched over a mold.

Manaugh: Speaking of that symbiosis, every once in a while, you’ll see articles in a magazine like New Scientist or you’ll read a press release coming out of a school like Harvard, saying that they’ve developed, for instance, little soft robots or other transformable, remote-control creatures for post-disaster reconnaissance—things like that. I mention this because I could imagine that you might have multiple reactions to something like that: one reaction might be excitement—excitement to discover a new material or a new technique that you could bring into a film someday—but the other reaction might be something almost more like, “Huh. We did that ten years ago.” I’m curious as to whether you feel, because of the nature of the movies that you work on, that the technical innovations you come up with don’t get the attention or professional recognition that they deserve.

Elizalde: I think your assessment is accurate on both counts. There are times when we see an innovation, or a scientific development, that we think could be beneficial to our industry; in fact, that happens all the time. There’s cross-pollination like that going on constantly, where we borrow from other industries. We borrow from the medical industry. We borrow from the aerospace industry. We borrow, really, from whatever scientific developments there are out there. We seek them out and we do employ some of those methods in our own routines and systems.

In fact, one of our main designers, and a very dear friend of mine whom I’ve worked side by side with for years now, is Mark Setrakian. When he’s not working here with us, he is a designer at one of the labs you just described.

So there is a lot of crossover there.

The mechanical skull of the scrunt from Lady in the Water.

Manaugh: That’s interesting—do the people who work for you tend to come from scientific or engineering backgrounds, like Mark, or are they more often from arts schools? What kinds of backgrounds do they tend to have?

Elizalde: Generally speaking, I think they’re people like myself who just have a love for monsters. That’s honestly where a lot of people in our industry come from. There are people who started their careers as dental technicians and people who started out as mold-makers in a foundry. In all of those cases, people from those sorts of technical fields gravitate toward this work because of, first of all, a love for monsters and creatures, and, secondly, a technical ability that isn’t necessarily described as an art form per se. Electronics people love to work for us. People who design algorithms love to work for us. Even people with a background in dentistry, like I say, love to work for us.

There’s really no limit to the fields that bring people to this industry—they come from everywhere. The common thread is that we all love movies and we all love creatures. We love making rubber monsters for a living.

The shelves at Spectral Motion gives a good sense of the workshop’s range of reference. Highlights include the Third Edition of the Atlas of Clinical Dermatology (in color), The National Audubon Society: Speaking for Nature, Marvel’s Fantastic Four, The Graphic Works of Odilon Redon, and a Treasury of Fantastic and Mythological Creatures.

To go back to your previous question, there are definitely times when I think we don’t get a lot of exposure for what we do, but there is also, at some level, a kind of “don’t pay attention to the man behind the curtain” thing going on, where we don’t really want people to look backstage at what makes a movie work. We are creating a living creature for film, and that’s what we want to put across to the audience. In some ways, it’s actually better if there isn’t too much exposure as to how something was created; it’s like exposing a magic trick. Once you know the secret, it’s not that big a deal.

So we do live in a little bit of a shroud of secrecy—but that’s okay. After a film is released, it’s not unusual for more of what we did on that film to be exposed. Then, we do like to have our technicians, our artists, and what we’ve developed internally here to be recognized and shown to the public, just so that people can see how cool it all is.

I think, though, that my response to those kinds of news stories is really more of a happiness to see new technologies being developed elsewhere, and an eagerness to get my hands on it so I can see what we could do with it in a movie. And, of course, sometimes we develop our very own things here that maybe someone hadn’t thought of, and that could be of use in other fields, like robotics. And that’s kind of cool, too.

Mike Elizalde of Spectral Motion sculpting an old age Nosferatu as a personal project.

Manaugh: Finally, to bring things full circle, we’re just curious as to how Spectral Motion got started.

Elizalde: Well, I became involved in the effects industry back in 1987. It sort of just dawned on me one day that I wanted to do this for a living. I had been in the Navy for eight years when it really started getting to me—when I realized I wasn’t doing what I wanted to do with my life.

I decided that I’d come back to my home, which is Los Angeles, California, and look into becoming a creature effects guy. I was totally enamored of Frankenstein’s Monster when I was a kid. I grew up watching all the horror movies that I could see—a steady diet of Godzilla, Frankenstein, you name it. All the Universal monsters, and even more modern things like An American Werewolf in London. They just really fascinated me. That was a real catalyst for me to start exploring how to do this myself.

I also learned from books. I collected books and started using my friends as guinea pigs, creating very rudimentary makeup effects on them. And, eventually, I landed my first job in Hollywood.

Cut to fifteen years later, and I had my first experience on set with Guillermo del Toro. I was working with him on Blade II. I had done an animatronic device for the characters he was using in his film, and I was also on set puppeteering. We became very good friends. That’s when he offered me the script for Hellboy and that’s how we started Spectral Motion. I became independent. Prior to that I had worked for Rick Baker, and Stan Winston, and all the other big names in town. But this was our opportunity to make our own names—and here we are, today.

You know, this is one of those industries where you can come in with a desire and some ability, and people around you will instruct you and nurture you. That’s how it happened for me. I was taught by my peers. And it really is a great way to learn. There are schools where you can learn this stuff, as well, but my experience proved to me that the self-taught/mentored method is a very good way to go.

• • •

This interview was simultaneously published on Venue, where a long list of other interviews discussing the human relationship to the virtual, built, and natural landscapes can be found.

Electromagnetic Chiaroscuro

[Image: A plane lands at Heathrow, London; photo by Simon Dawson, courtesy of Bloomberg].

A short article in The Economist raises the possibility that television signals in London, England, could be turned into a passive, aircraft-detecting radar system.

A system such as this “relies on existing signals, such as television and radio broadcasts, to illuminate aircraft.”

This involves using multiple antennas to listen out for signals from broadcast towers, and for reflections of those signals that have bounced off aircraft, and comparing the two. With enough number-crunching, the position, speed and direction of nearby aircraft can then be determined. Passive radar requires a lot of processing power, but because there is no need for a transmitter, it ends up being cheaper than conventional radar. It also has military benefits, because it enables a radar station to detect objects covertly, without emitting any signals of its own.

“Will soap operas and news bulletins end up helping to direct aircraft in London’s busy skies?” The Economist asks. The idea of the entirety of London becoming a passive aeronautic device, pinging both commercial aircraft and military planes, and tracking the encroachment of unmanned aerial vehicles on urban airspace, all simply by piggybacking on the everyday technology of the television set, is pretty eerie, as if living in a giant radar dish powered by late-night entertainment.

London becomes a weird new kind of camera pointed upward at secretly passing aircraft, your living room taking pictures of the sky.

It also brings to mind the so-called “wifi camera” developed way back in 2008 by Bengt Sjölén and Adam Somlai Fischer with Usman Haque. The wifi camera “takes ‘pictures’ of spaces illuminated by wifi in much the same way that a traditional camera takes pictures of spaces illuminated by visible light.”

[Image: The “wifi camera” by Bengt Sjölén and Adam Somlai Fischer with Usman Haque].

You can thus create images of architectural spaces, almost like a CAT scan, based on wifi signal strength, deducing from the data things like building layout, room density, material thickness, the locations of walls, doors, windows, and more, albeit to quite a low degree of resolution.

[Image: Signal data and its spatial implications from the “wifi camera” by Bengt Sjölén and Adam Somlai Fischer with Usman Haque].

“With the camera we can take real time ‘photos’ of wifi,” its developers write. “These show how our physical structures are illuminated by this particular electromagnetic phenomenon and we are even able to see the shadows that our bodies cast within such ‘hertzian’ spaces.”

It’s a kind of electromagnetic chiaroscuro that selectively and invisibly “illuminates” the built environment—until the right device or camera comes along, and all that spatial data becomes available to human view. It’s like a sixth sense of wifi, or something out of Simone Ferracina‘s project Theriomorphous Cyborg.

Here, the comparison to the London TV radar system is simply that, in both cases, already existing networks of electromagnetic signals are operationalized, so to speak, becoming inputs for a new form of visualization. You can thus take pictures of the sky, so to speak, using passive, city-wide, televisual radar, and you can scan the interiors of unknown buildings using wifi cameras tuned to routers’ electromagnetic glow.

[Image: From the “wifi camera” by Bengt Sjölén and Adam Somlai Fischer with Usman Haque].

Apropos of very little, meanwhile, and more or less dispensing with plausibility, it would be interesting to see if the same sort of thing—that is, passive radar, using pre-existing signals—could somehow be used to turn the human nervous system itself into a kind of distributed, passively electric object-detection device on an urban scale. Nervous systems of the city as sensor network: a neuro-operative technology always scanning, sometimes dreaming, interacting with itself on all scales.

Urban Ecology

An interesting symposium at Columbia University later this month looks at “the ecology of New York City“:

This symposium will explore a range of ecological research happening in and around New York City. The program is focused on three themes—organisms, environment, and history—with speakers from a range of disciplines including community ecology, evolutionary biology, ecophysiology, paleoecology, archaeology, and conservation. The research presented here spans multiple taxa including plants, microbes, birds, and mammals.

The event is free and kicks off—as a lot of academic events unfortunately do—at 9am on a Saturday morning, but if you’re up and at ’em and want to stop by, the program looks pretty compelling. Expect the marginal ecologies of vacant lots, green roofs, urban waterways, regional bird migration, marshlands, and even a look back at “Early Foods and Medicines of 17th Century New Amsterdam: Cross-cultural Plant Population Exchange and Environmental Change in the Lower Hudson Valley,” when the plans growing along the river could perhaps be thought of as a kind of cultivated pharmacy garden. Finally, the symposium wraps up with a speculative look ahead to the ecology of greater New York in the year 2409 AD, with Eric Sanderson of Mannahatta fame leading the conversation.

You must register to attend, after which you’ll find everyone in room 501 of Schermerhorn Hall at Columbia University’s Morningside Campus on Saturday, April 20.

(Thanks to Nicola Twilley for the tip!)

Model Landscape

[Image: The WWI terrain model of Messines, Belgium, in Cannock Chase, England; photo, “taken probably 1918 by Thomas Frederick Scales,” courtesy of the National Library of New Zealand].

Past Horizons reported the other week that “a large concrete terrain model on Cannock Chase, representing a section of the Great War battle of Messines Ridge, is to be excavated” by archaeologists later this year.

The preserved but damaged model “represents the section of the front captured by New Zealand troops,” and, indeed, the model itself was used most extensively by troops from New Zealand who had been stationed in England during the war.

[Image: The concrete model at Cannock Chase, including a viewing hut; photo via The First World War Camps of Cannock Chase].

The construction of the model is itself pretty fascinating, as it was accomplished with the forced help of German POWs:

The Messines model had been constructed at Brocton in 1918 by men from the New Zealand Rifle Brigade, using German labour from the nearby prisoner of war camp. The use of trench maps and aerial photographs ensured the model, constructed in concrete, had a high degree of accuracy; trenches, strong points, railways, roads and buildings all being represented. The model was used to train soldiers in topography and to show how an impeccably planned battle could be won with minimal casualties. One feature, believed to be a “viewing platform” around three sides of the model still exists.

The “full excavation” to occur later this year—hopefully more photographs of the model will emerge online—will include the “recording and reburial” of the simulated landscape.

[Image: A viewing hut for studying the model landscape; photo via The First World War Camps of Cannock Chase].

An interpretive center—complete with an interactive 3D digital model of the nearby 3D concrete model of the actual 3D battlefield in Belgium—will also be constructed, to guide visitors through the site and to “explain how these models were used to prepare troops for battle.”

Near the model, however, lie the rest of the training camps at Cannock Chase, the subject of at least one historical website about these wartime facilities, where we read about the preserved earthworks used to train soldiers for trench warfare:

Front line trenches were typically constructed in a pattern which in plan resembled battlements (also known as the Greek Key pattern) with the intention that attackers were fired upon from three sides. Conversely communication trenches connecting the front line with reserve trenches were built in a zig-zag pattern. This ensured that if the front line trenches fell the enemy would not have a clear line of sight down the length of the “communication” trench and could therefore not enfilade (fire straight at) approaching reinforcements.

They were topographic baffles, we might say.

[Image: The scale of the model becomes more clear in this photo, also via Past Horizons].

Briefly, I’m reminded of an aside by natural historian Tim Flannery in his long but extraordinarily interesting book The Future Eaters: An Ecological History of the Australasian Lands and People, where he comments on the Maori origins of European trench warfare tactics.

The Maori—pre-European but remarkably recent inhabitants of the islands of New Zealand—had been brutalized, in Flannery’s telling, by their own environmental mismanagement of their adopted island home, all but exterminating the indigenous wild bird population and reducing themselves, through egregiously unsustainable hunting practices, to an almost stereotypically Hobbesian state of nature.

They had thus long been at war amongst themselves, fighting over the archipelago’s steadily dwindling sources of protein—which is when the British came along, unknowingly stumbling into the midst of what Flannery describes as a chaotic and very nearly continuous state of ecologically-necessitated human conflict.

The British, Flannery explains, thus learned firsthand that the Maori had already gone to ground, so to speak, digging themselves into defensive trenches and other complex earthworks as their battles became both more extreme and more sophisticated. “Indeed,” Flannery writes, “during the Maori defense of the pa [or fortress] Puapekapeka, the British learned their first lessons in trench warfare and underground bunkers from the Maori. They were to turn these tactics to their advantage in the First World War.”

Of course, as we’ve explored elsewhere on BLDGBLOG, Flannery’s claim is an overstatement—”siege mines” and other forms of militarized earthworks had already long existed in the European war tradition, well before English seafarers reached New Zealand—but it’s an interesting claim, nonetheless, and it resonates strangely with this vision of New Zealand troops studying trench geometries on a large-scale 3D concrete model in the middle of WWI England, preparing to dig themselves into “Greek key” and zig-zag patterns over on the European mainland.

Benchmark B

[Image: The Central Park bolt, photographed by The Bowery Boys].

One of many memorable images from Marguerite Holloway’s recommended new book The Measure of Manhattan is the Central Park bolt, a 19th-century survey marker affixed in place by John Randel Jr., original surveyor of Manhattan’s street grid.

The bolt is, in Holloway’s words, “the relic of an invisible intersection, one city leaders had planned to build in 1811 but that had never been constructed.” In fact, she adds, these “planned but never realized intersections” are rare but not, in fact, unique, low in number but peppered around the island like acupuncture points that somehow materialized before the body they were meant to intensify. The city lives alongside and strangely amidst other, historically unrealized versions of itself.

This particular “grid bolt,” as Holloway goes on to describes it, is now “long-forgotten,” but has recently become “part of the National Spatial Reference System database.” This means, as she phrases it, that a “bolt on a rock in a park on an island is connected to the satellites that travel above us in great arcs,” incorporated into the great digital systems of earth-measurement—or geodesy—used today.

[Image: A photo of Benchmark B taken by Tullio Aebischer, courtesy of Discovery News].

I thought of this when reading earlier this winter about a “Roman marker used to measure the Earth” that had been found “near the town of Frattocchie along one of the earliest Roman roads which links the Eternal City to the southern city of Brindisi.”

To refer to it as “Roman,” however, is a bit misleading, as it was actually laid in the mid-1800s by Father Angelo Secchi—not in the days of ancient Rome—as part of an attempt to establish a comprehensively measured geographic baseline; this baseline could be used to support much larger calculations that would ultimately verify (or not) the mathematically projected shape of the Earth. It thus acted as a verification point for abstract speculation.

A geographer named Tullio Aebischer explained how it worked to Discovery News back in January:

“We found it after a long archival research and a georadar survey. The discovery will allow us to precisely verify the ancient measurements with modern GPS technologies,” Aebischer said.

“The measurements along the Appian Way were part of surveys which began in the middle of the 18th century and spread all over Italy, in Europe, especially in France and Lapland, and in South America. The aim was to measure the shape of the Earth,” Aebischer said.

Today, the marker is referred to as Benchmark B—with Benchmark A located back in Rome proper, near the tomb of Cecilia Metellaan architectural feature familiar to any fans of Piranesi. More specifically, it is “hidden under a manhole in the middle of the road at the Cecilia Metella mausoleum”—as such, surely a worthy target for urban explorers intent on bringing to light the forgotten objects and spaces of geographic history.

Buried benchmarks, competing meridians, rejected state lines, shifting global poles, mistaken horizons: one can easily imagine a kind of amateur archaeology dedicated to exploring nothing but obsolete regimes of territorial management, whole planet-spanning systems of measurement whose function depends on these almost impossibly mundane, mud-covered artifacts.

If Borges, say, is their poet laureate, then we might say that these—lost bolts, grids, and baselines—are the sites and relics of other Earths that nearly were, derelict props from a Borgesian folklore now geodetically coextensive with the planet.

In any case, both of the examples referred to here are all but forgotten 19th-century objects—a plaque and a bolt—that nonetheless now participate in much larger-scale projects of measurement, one planetary, the other civic: two physical monuments to older ways of modeling, measuring, and definitively interpreting something as unassuming as the ground.

Parallax View



Spatially speaking, the game Parallax looks pretty amazing, especially now that, in the words of Rock, Paper, Shotgun, the developers—two students at Queen’s University, calling themselves Toasty Games—have “decided to turn off all the gravity.”

The resulting “gravitational surface test,” seen in the first video embedded above, lets you twist, meander, level-hop, and corkscrew around inside the game’s “overlapping spatial dimensions,” passing through portals on windowed ribbons of black and white space.

The game has not been released yet, but, if it looks like something you might want to play someday, consider voting for Parallax over on Steam Greenlight.

Cool Dam

[Image: The Auburn Dam site, via Google Maps].

While re-reading John McPhee’s excellent book Assembling California last month for the San Andreas Fault National Park studio, I was struck once again by a short description of a Californian landscape partially redesigned in preparation for a reservoir that never arrived.

McPhee is referring to the Auburn Dam, in the city of Auburn, northeast of Sacramento (and near a small town called, of all things, Cool, California). The $1 billion Auburn Dam would have been “the largest concrete arched dam in the world,” according to Geoengineer.org, but construction was abandoned over fears that seismic activity might cause the dam to collapse, inundating Sacramento.

Construction was begun, however, and its cessation produced some rather unassuming ruins—basically large piles of exposed gravel and rock now eroding in springtime floods.

Nonetheless, these mounds were not cheap, including “$327 million concrete abutments [that] stand in stark contrast to the rest of the oak-filled canyon,” as the Auburn-Cool Trail site (or ACT) explains. “The washout of the 250-foot coffer dam in 1986 left huge scars that continue to erode, with large broken pipes sticking out in a precarious manner. Hasty roadbuilding for the project has contributed to landslides that have caused sedimentation and increased turbidity in the river downstream and in Folsom Lake. The cost of seasonal repairs on the service roads alone has run into the millions of dollars, and many roads remain cracked and unsafe.”

[Image: A bypass tunnel built in anticipation of the never-completed Auburn Dam; photo by D.P. Zeccos of Geoengineer.org].

Amazingly, though, and this is where we come to John McPhee, regional infrastructure was constructed with an eye on what the landscape would look like in the future, given the presence of the Auburn Dam, leading to surreal sights like the Foresthill Bridge.

The bridge, which you can still drive on today, is a towering structure remarkably out of proportion with the landscape, its unnecessary height all but incomprehensible until you imagine the cold waters of the American River rising up behind the Auburn Dam, forming a recreational lake and reservoir, the lights of the bridge reflected at night in the waters below. “Not particularly long,” McPhee quips, “the bridge was built so high in order to clear the lake that wasn’t there.”

[Image: The Foresthill Bridge, via Wikipedia].

Weirdest of all, McPhee writes, there were boat docks built high up on the surrounding hillsides, waiting for their lake.

One gravel boat ramp, he explains, “several hundred yards long, descends a steep slope and ends high and nowhere, a dangling cul-de-sac. The skeletons [a skeleton crew of federal workers stationed at the former dam site] call it ‘the largest and highest unused boat ramp in California.’ Houses that cling to the canyon sides look into the empty pit. They were built around the future lakeshore under the promise of rising water. You can almost see their boat docks projecting into the air. Thirty-three hundred quarter-acre lots were platted in a subdivision called Auburn Lake Trails.”

[Image: The expected waters of a lake that never arrived; via Wikipedia].

While I will confess that, while using the omniscient eye of Google Maps, I can’t find these gravel boat ramps leading down to the rim of a lake that doesn’t exist—looking in vain for a maze of quasi-lakeside home lots perched uselessly in the hills—I assume that it’s either because the ramps have long since revegetated, given the two decades that have passed since the publication of McPhee’s book, or perhaps because there was a certain amount of willful projection on McPhee’s part in the first place.

After all, the idea of a line of homes built far up in the hills somewhere, overlooking an empty space in which a lake should be, is so beautiful, and so perfectly odd, that it would be tempting to conjure it into being, imagining bored kids in a town called Cool riding their bikes down to lost docks in the woods each summer near sunset, climbing over maritime ruins slowly crumbling in the mountains, throwing rocks at rotting lifejackets, building small forts inside the discarded hulls of someone else’s midlife crisis, perhaps still waiting, even hoping, for a flood to come.

Rockets to Reefs

[Image: Fallen rockets at the bottom of the sea; photo by Bezos Expeditions, via Discovery News].

News this week that the discarded engines of the Apollo rockets from the moon missions of the 1960s have been found at the bottom of the ocean by Amazon.com billionaire Jeff Bezos is perhaps further indication that the robber barons of the 21st-century will be spending at least some of their fortunes on complex, engineering-oriented, and slightly Nemo-like adventures, whether that means mining asteroids, flying civilians into space, building 10,000-year clocks in the mountains of west Texas, traveling down into the deepest trenches on Earth, or, yes, performing gonzo acts of space archaeology 400 miles off the east coast of Florida.

Bezos’s description of the rocket-age ruins now on their way back to dry land—and, eventually, into a museum—puts a fairly Ballardian spin on the discovery: “We’ve seen an underwater wonderland,” he quipped, “an incredible sculpture garden of twisted F-1 engines,” a garden of fallen offworld technologies appearing to grow coral at the bottom of the sea.

I’m reminded of a line from Robert Charles Wilson’s novel Axis, where Wilson writes that “the sky filled with the luminous debris of ancient, incomprehensible machines,” fragmentary gears and circuits drifting through the air like mechanical snow, only, here, it’s the equipment of our own recent history having washed down through the ocean, taking on the ringed appearance of coral.

Maintaining his Ballardian tone, Bezos suggested that the seafloor from which the rockets were pulled was not unlike the surface of the moon: “We on the team were often struck by poetic echoes of the lunar missions. The buoyancy of the ROVs looks every bit like microgravity. The blackness of the horizon. The gray and colourless ocean floor. Only the occasional deep sea fish broke the illusion.”

Explaining his interest in restoring the behemoth pieces of equipment being re-absorbed into the planetary ecosystem, Bezos adds that his team “photographed many beautiful objects in situ and have now recovered many prime pieces. Each piece we bring on deck conjures for me the thousands of engineers who worked together back then to do what for all time had been thought surely impossible.” Now, he says, “We want the hardware to tell its true story, including its 5,000 mph re-entry and subsequent impact with the ocean surface.” Sadly, doing this required interrupting what might someday have been a reef, possibly one of the most interesting points to take away from all of this—that even something as unearthly as rockets, given enough time and isolation, could become overgrown, a kind of Angkor Wat of the sea, indistinguishable from life in the oceans.

Build a Bridge

Last year, I posted about a summer workshop held in upstate New York run by architect David Gersten of the Cooper Union. Well, it’s back and this summer’s 8-week program is even more ambitious. However, note that the deadline for applications fast approaches (due March 25).

[Images: Photos from Arts Letters & Numbers; applications for the summer 2013 workshop are due March 25].

As Gersten himself describes it, this summer’s workshop will be “structured through six disciplines: construction, drawing, film/photography, writing, theater and music/sound,” forming a kind of “disciplinary exquisite corpse.” Participants in each of these fields “will work in parallel and in close proximity, directly interacting though a framework of shared questions and actions.”

During the eight-week intensive workshop, together, we will build a bridge; a bridge that is a stage, a drawing board, a film screen, a story, a place to act—a bridge between many disciplines. This bridge will be co-constructed, as each step in its construction will be developed as a series of shared questions across all of the disciplines. As we excavate the site, we will ask: What is excavation in drawing? in film, in writing, in theater, in music. As we pour the foundations we will ask what are foundations in drawing, in film, in writing, in theater, in music. As we raise the structure, we will ask what is structure in drawing, in film, in writing, in theater, in music. As raise a new horizon, we will ask; what is horizon in drawing, in film, in writing, in theater, in music? Week by week as we move thought the shared questions we will co-construct a work, an emergent space between all of the disciplines.

The grand finale of the eight weeks will be “a live performance built between all of the works,” an interdisciplinary opera of construction, poetry, drawing, light, and words.

[Image: Photo from Arts Letters & Numbers].

As is probably obvious, this is a much more embodied and physically engaged form of architectural exploration, in many ways at the opposite end of the world from sitting inside, designing little triangle-shaped tiles in Rhino all day, and, as such, it offers a great way to experience the humid and heavy vegetation of a New York forest outside the nighttime lights of the city for a few weeks, exploring the rigors of other disciplines (and possibly even driving heavy excavation equipment).

[Image: Photo from Arts Letters & Numbers].

Application information and a short film about the summer program are available on the project website.

Meshworm

The last few years have seen the rise of “soft robots,” squirming, biomorphic, and highly flexible little machines that can be used to slip through cracks, infiltrate tight spaces, even explore architectural ruins in the wake of earthquakes and warfare.

But soft robots are also getting closer to becoming what are, in effect, mechanically agile medical devices that can “monitor your insides,” in the words of Sangbae Kim, assistant professor of mechanical engineering at MIT, as reprinted by Popular Science, sneaking around inside your body like an earthworm.

The so-called “meshworm” is exactly that: a robotic “worm” made from layered wire mesh that uses “nickel-titanium alloy for muscles.” The application of a high temperature “shortens the wire, tightens the spring’s coil, and squeezes that body segment.” Thus, “when a segment contracts, the one behind it stretches out, and the robot inches forward. The tendon also has muscles attached so the robot can turn left or right.”

The result is the oddly grotesque and somewhat phallic creeping machine you see in the short video, above. The idea is that this could be used for medical diagnosis or vascular surgery.

However, the architectural or broadly spatial uses of this technology are also worth considering, including the potential for monumentally scaled-up versions of the meshworm, capable of assisting human or material transport through the built environment—a kind of peristaltic package-delivery tube that could replace the much-discussed pneumatic tubes of an earlier urban era. Like something out of a David Cronenberg film, the city would have a kind of giant bowel-infrastructure distributing waste material from point to point.

More interestingly, though, this new class of soft robots and meshworms could quickly assume their roles as architectural explorers in their own right, burrowing through collapsed buildings, passing beneath or around doors, even being taken up by the more ambitious burglars and tactical operations teams of the world.

Or, for example, earlier this month in the cave state of Kentucky, the annual “Cave City Hamfest” explored how to bring radio transmission deep underground. This was “accomplished by placing handheld (relay capable) walkie-talkies or relay boxes along a cave passage.” “After the inital debugging phase, we demonstrated the ability to simply walk the cave, until data was lost and then backing up a few feet for a solid link. Then placing a radio on a convenient rock and continuing.” Taking this as our cue, we could simply wire-up a team of meshworms with radio repeaters and send a small, crawling team of spelunking robots far ahead of us into caves where no human body can fit; they would crawl until they lose a signal, move back a few feet to re-establish a secure feed, and then the next one squirms dutifully forward.

You’ve thus built a mobile, semi-autonomous, deep-earth radio network made from repurposed medical devices—equal parts cave-mapping expedition and subterranean pirate radio station—opening up whole new realms of underground exploration (and tactical media).

Landscape Futures

[Images: The cover of Landscape Futures; book design by Brooklyn’s Everything-Type-Company].

I’m enormously pleased to say that a book project long in the making will finally see the light of day later this month, a collaboration between ACTAR and the Nevada Museum of Art called Landscape Futures: Instruments, Devices and Architectural Inventions.

On a related note, I’m also happy to say simply, despite the painfully slow pace of posts here on the blog, going back at least the last six months or so, that many projects ticking away in the background are, at long last, coming to fruition, including Venue, and, now, the publication of Landscape Futures.

[Images: The opening spreads of Landscape Futures; book design by Everything-Type-Company].

Landscape Futures both documents and continues an exhibition of the same name that ran for a bit more than six months at the Nevada Museum of Art in Reno, from August 2011 to February 2012. The exhibition was my first solo commission as a curator and by far the largest project I had worked on to that point. It was an incredible opportunity, and I remain hugely excited by the physical quality and conceptual breadth of the work produced by the show’s participating artists and architects.

Best of all, I was able to commission brand new work from many of the contributors, including giving historian David Gissen a new opportunity to explore his ideas—on preservation, technology, and the environmental regulation of everyday urban space—in a series of wall-sized prints; finding a new genre—a fictional travelogue from a future lithium boom—with The Living; and setting aside nearly an entire room, the centerpiece of the 2,500-square-foot exhibition, for an immensely complicated piece of functioning machinery (plus documentary photographs, posters, study-models, an entire bound book of research, and much else besides) by London-based architects Smout Allen.

Those works joined pre-existing projects by Mason White & Lola Sheppard of Lateral Office and InfraNet Lab, whose project “Next North/The Active Layer” explored the emerging architectural conditions presented by climate-changed terrains in the far north; Chris Woebken & Kenichi Okada, whose widely exhibited “Animal Superpowers” added a colorful note to the exhibition’s second room; and architect-adventurer Liam Young, who brought his “Specimens of Unnatural History” successfully through international customs to model the warped future ecosystem of a genetically-enhanced Galapagos.

[Images: More spreads from Landscape Futures; book design by Everything-Type-Company].

But the book also expands on that core of both new and pre-existing work to include work by Rob Holmes, Alex Trevi (edited from their original appearance on Pruned), a travelogue through the lost lakes of the American West by Smudge Studio, a walking tour through the electromagnetic landscapes of Los Angeles by the Center for Land Use Interpretation, and a new short story by Pushcart Prize-winning author Scott Geiger.

These, in turn, join reprints of texts highly influential for the overall Landscape Futures project, including a short history of climate control technologies and weather warfare by historian James Fleming, David Gissen‘s excellent overview of the atmospheric preservation of artifacts in museums in New York City (specifically, the Temple of Dendur at the Metropolitan Museum of Art), and a classic article—from BLDGBLOG’s perspective, at least—originally published in New Scientist back in 1998, where geologist Jan Zalasiewicz suggests a number of possibilities for the large-scale fossilization of entire urban landscapes in the Earth’s far future.

Even that’s not the end of the book, however, which is then further augmented by a long look, in the curator’s essay, at the various technical and metaphoric implications of the instruments, devices, and architectural inventions of the book’s subtitle, from robot-readable geotextiles and military surveillance technologies to the future of remote-sensing in archaeology, and moving between scales as divergent as plate-tectonic tomography, radio astronomical installations in the the polar north, and speculative laser-jamming objects designed by ScanLAB Projects.

To wrap it all up and connect the conceptual dots set loose across the book, detailed interviews with all of the exhibition’s participating artists, writers, and architects fill out the book’s long middle—and, in all cases, I can’t wait to get these out there, as they are all conversations that deserve continuation in other formats. The responses from David Gissen alone could fuel an entire graduate seminar.

The spreads and images you see here all come directly from the book.

[Images: Spreads from Landscape Futures; book design by Everything-Type-Company].

Of course, the work itself also takes up a large section in the final third or so of the book; consisting mostly of photographs by Jamie Kingham and Dean Burton, these document the exhibition contents in their full, spatial context, including the double-height, naturally lit room in which the ceiling-mounted machinery of Smout Allen whirred away for six months. This is also where full-color spreads enter the book, offering a nice pop after all the pink that came before.

[Images: Installation shots from the Nevada Museum of Art, by Jamie Kingham and Dean Burton, including other views, from posters to renderings, from Landscape Futures; book design by Everything-Type-Company].

Which brings us, finally, to the Landscape Futures Sourcebook, the final thirty or forty pages of the book, filled with the guest essays, travelogues, walking tours, photographs, a speculative future course brief by Rob Holmes of Mammoth, and the aforementioned short story by Scott Geiger.

[Images: A few spreads from the Landscape Futures Sourcebook featured in Landscape Futures; book design by Everything-Type-Company].

Needless to say, I am absolutely thrilled with the incredible design work done by Everything-Type-Company—a new and rapidly rising design firm based in Brooklyn, founded by Kyle Blue and Geoff Halber—and I am also over the moon to think that this material will finally be out there for discussion elsewhere. It’s been a long, long time in the making.

In any case, shipping should begin later this month. Hopefully the above glimpses, and the huge list of people whose graphic, textual, or conceptual work is represented in the book, will entice you to support their effort with an order.

Enjoy!

(Thank you to all the people and organizations who made Landscape Futures possible, including the Nevada Museum of Art and ACTAR, supported generously by the Graham Foundation for Advanced Study in the Fine Arts, the National Endowment for the Arts, and the Andy Warhol Foundation for the Visual Arts).