Underground Cathedrals of Radiation and Zones of Irreversible Strain

[Image: Nevada test site, Google Maps, filtered through Instagram.]

There’s a great line in Tom Zoellner’s book Uranium: War, Energy, and the Rock That Shaped the World where he describes the after-effects of underground nuclear tests. Zoellner writes that, during these tests, “a nuclear bomb buried in a deep shaft underneath a mountain would vaporize the surrounding rock and make a huge cathedral-like space inside the earth, ablaze with radioactivity.”

I thought of Zoellner’s vision of a “huge cathedral-like space inside the earth” recently while reading a paper by Colin N. Waters et al., called “Recognising anthropogenic modification of the subsurface in the geological record.” Among other things, the authors describe the long-term “structural effects of subsurface weapon detonations.”

[Image: Nevada test site, Google Maps, filtered through Instagram.]

They suggest that these detonations produce spaces—such as collapse cones and debris fields—that have “no direct natural analogue,” although they do helpfully contrast weapon-test craters with meteor-impact sites. (The authors also break underground nuclear test sites down into “zones,” which include a “zone of irreversible strain,” which is an amazing phrase.)

The larger purpose of their paper, though, is to look at long-term “signatures” that humans might leave behind in our underground activity, from nuclear tests to mineralogical carbon-capture to deep boreholes to coal mines. Will these signatures still be legible or detectible for humans of the far future? On the whole, their conclusion is not optimistic, suggesting instead that even vast subterranean mines and sites of underground nuclear weapons tests will fade from the terrestrial archive.

“Many of the physical and chemical products of human subsurface intrusion either do not extend far from the source of intrusion, lack long-term persistence as a signal or are not sufficiently distinctive from the products of natural processes to make them uniquely recognisable as of anthropogenic origin,” they write. “But the scope and complexity of the signals have increased greatly over recent decades, both in areal extent and with increasing depths, and seem set to be a fundamental component of our technological expansion. There will be some clues to the geologist of the far-future, when historical knowledge records may not be preserved, that will help resolve the origin.”

[Image: Nevada test site craters, courtesy of the National Nuclear Security Administration Nevada Site Office Photo Library.]

Nevertheless, it is totally fascinating to imagine what future archaeologists might make of Zoellner’s “huge cathedral-like space[s] inside the earth, ablaze with radioactivity,” long after they’ve collapsed, and where sand has been fused into unnatural glass and anomalous traces of radiation can still be found with no reasonable explanation for how they got there.

Could future archaeologists deduce the existence of nuclear weapons from such a landscape? And, if so, would such a suggestion—ancient weapons modeled on the physics of stars—sound rational or vaguely insane?

(Vaguely related: “fossil reactors” underground in Gabon.)

2 thoughts on “Underground Cathedrals of Radiation and Zones of Irreversible Strain”

  1. Just finished Zoellner’s book – what a great read!
    Highly recommended a 2010 documentary by Michael Madsen, ‘Into Eternity’, about Finland’s construction of a long-term radioactive waste disposal bunker.

    1. Good to hear you enjoyed it! Loved that documentary, as well. My wife and I were able to tour the Waste Isolation Pilot Plant (for nuclear waste disposal) in New Mexico a few years ago, and we have a brief write-up of our visit in our quarantine book coming out next year; if you get a chance to check it out, you might be interested. Either way, thanks for reading!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.