Magnetic Landscape Architecture

[Image: R. Fu, via ScienceNews].

Although I seem to be on a roll with linking to ScienceNews stories, this is too amazing to pass up: “People living at least 2,000 years ago near the Pacific Coast of what’s now Guatemala crafted massive human sculptures with magnetized foreheads, cheeks and navels. New research provides the first detailed look at how these sculpted body parts were intentionally placed within magnetic fields on large rocks.”

The magnetic fields were likely created by lightning strikes.

This is incredible: “Artisans may have held naturally magnetized mineral chunks near iron-rich, basalt boulders to find areas in the rock where magnetic forces pushed back, the scientists say in the June Journal of Archaeological Science. Predesignated parts of potbelly figures—which can stand more than 2 meters tall and weigh 10,000 kilograms or more—were then carved at those spots.”

It’s like a geological farm for the secondary effects of lightning. A lightning farm for real!

The mind boggles at the thought of magnetic landscape architecture, or magnetic masonry in ancient stonework, or even huge sculptures invisibly adhering to one another through magnetic forces, giving the appearance of magic.

Imagine a valley of exposed bedrock and boulders, its unusually high iron content making the rocks there attractive to lightning. Over tens of thousands of lightning strikes, the valley becomes partially magnetized, resulting in bizarre geological anomalies mistaken for the actions of a spirit world: small pebbles roll uphill, for example, or larger rocks inexplicably clump together in structurally precarious agglomerations. Stones perhaps hover an inch or two off the ground, pulled upward toward magnetic overhangs, or rocks visibly assemble themselves into small cairns, clicking into place one atop the other.

As you step into the valley, the only sound you hear is a trembling in the gravel ahead, as if the rocks are jostling for position. Your jewelry begins to float, pulling away from your wrists and chest.

Anyway, read more at ScienceNews.

(Also, watch for my friend Eva Barbarossa’s book on magnets coming out this fall.)

Terrestrial Concussion / Infinite Half-Life

[Image: Courtesy Xenon Collaboration, via ScienceNews].

Earthquakes, popularly seen as discrete, large-scale events that occur only once every few years—once a decade, once a century, once every thousand years—turn out to be nearly continuous. There are always earthquakes.

According to ScienceNews, “millions of tiny, undetected earthquakes rumble through the ground” every day in California. These are “quakes of such small magnitude that their signals were previously too small to be separated from noise.”

In other words, while we wait for the Big One—a true seismic event with the power to punctuate and interrupt everyday life—there are millions of smaller earthquakes constantly rattling the floors, walls, and roads we consider stable.

I’m reminded of a recent article in the New York Times about football player Ryan Miller. “Miller has had 10 concussions in all,” we read, “and that is to understate his battering. The brain sits in fluid inside the armor of a skull, and even nonconcussive whacks can result in brain colliding with bone. A couple of hard hits can come to resemble a concussion. The average football player, according to Cantu, takes 600 to 800 hits in high school and 800 to 1,000 in college.”

Concussions are like earthquakes, in other words: we wait for the Big One, but this means that, by definition, we miss the cumulative effects of all the little shocks along the way. Everything is moving; the earth is not stable; the landscape is jolting and cracking at a concussive rate, every day, beneath our feet.

On the opposite side of this temporal spectrum, the same website, ScienceNews, also reported that some radioactive decay takes so long, they can outlast our current universe.

“It takes 1 trillion times the age of the universe for a xenon-124 sample to shrink by half,” we read. “The decay, seen in xenon-124 atoms, happens so sparingly that it would take 18 sextillion years (18 followed by 21 zeros) for a sample of xenon-124 to shrink by half, making the decay extremely difficult to detect.”

That’s a bit of an understatement: it means you would need a machine significantly older than the universe to detect and measure these moments of decay.

[Image: Xenon, via Images of Elements].

The breakdown of this specific example—the element xenon-124—involves something called “two-neutrino double electron capture,” and I won’t even pretend to understand what it means. Nevertheless, what interests me here is the implied possibility that, well, on a universal timescale, everything is decaying. Everything is breaking down. But it occurs on a scale so huge it is inaccessible to human experience, certainly, but perhaps even to human cognition.

Imagine an element that decays only once every 750 trillion years. (Our current universe is 14 billion years old.) Imagine a creature living 749.999 trillion years, arrogantly thinking that its world is immortal.

In any case, this feels like the exact inverse of the previous example: while we’re on the hunt for radioactive decay, or while we’re out there looking for millions of overlooked mini-quakes and micro-concussions, we might actually miss detecting these massive punctuations of time, epic cycles so rare and daunting that our own universe cannot accommodate them.

For those attentive enough, in other words, there are concussions and earthquakes constantly; yet, on a large-enough timescale, everything decays, everything breaks down, everything has a half-life. Everything is radioactive. In the midst of all that, we make breakfast and take the subway to work.

300 Years of Dust

I’m late to the news that the ancient Akkadian Empire might have collapsed due to “dust activity” that “persisted for 300 years.” As a resident of Los Angeles, it’s sobering to read.

“Archaeologists have long been baffled by the abrupt abandonment of northern Mesopotamian settlements roughly 4,200 years ago,” Eos reports. This otherwise mysterious abandonment might have been catalyzed by three centuries of dust—“dust for 300 years”—arising from extreme drought and aridity.

The dust was so bad, in fact, it left a geological record in regional stalactites.

Perhaps that’s how the end will come, as a slow but relentless accumulation of dust on windowsills—in California, Arizona, Nevada—a civilizational collapse that should have been signaled, in retrospect, by the rapid growth of the house-cleaning economy, but that, for at least a generation, will take the form of puzzled homeowners wiping wetted cloths along wood trim, wondering if there’s something going on outside.

Afghan Twin

[Image: Screen-grab from an interview between John Peel and Aphex Twin, filmed in Cornwall’s Gwennap Pit; spotted via Xenogothic].

An anecdote I often use while teaching design classes—but also something I first read so long ago, I might actually be making the whole thing up—comes from an old interview with Richard D. James, aka Aphex Twin. I’ve tried some very, very lazy Googling to find the original source, but, frankly, I like the version I remember so much that I’m not really concerned with verifying its details.

In any case, the story goes like this: in an interview with a music magazine, published I believe some time in the late-1990s, James claimed that he had been hired to remix a track by—if I remember correctly—The Afghan Whigs. Whether or not it was The Afghan Whigs, the point was that James reported being so unable to come up with new ideas for the band’s music that he simply sped their original song up to the length of a high-hat, then composed a new track of his own using that sound.

The upshot is that, if you were to slow down the resulting Aphex Twin track by several orders of magnitude, you would hear an Afghan Whigs song (or whatever) playing, in its entirety, every four or five minutes, bursting surreally out of the electronic blur before falling silent again, like a tide. Just cycling away, over and over again.

What’s amazing about this, at least for me, is in the possibilities it implies for everything from sonic camouflage—such as hiding acoustic information inside a mere beep in the overall background sound of a room—to art installations.

Imagine a scenario, for example, in which every little bleep and bloop in a song (or TV commercial or blockbuster film or ringtone) somewhere is actually an entire other song accelerated, or even what this could do outside the field of acoustics altogether. An entire film, for example, sped up to a brief flash of light: you film the flash, slow down the resulting footage, and you’ve got 2001 playing in a public space, in full, hours compressed into a microsecond. It’s like the exact opposite of Bryan Boyer’s Very Slow Movie Player, with very fast nano-cinemas hidden in plain sight.

The world of sampling litigation has been widely covered—in which predatory legal teams exhaustively listen to new musical releases, flagging unauthorized uses of sampled material—but, for this, it’s like you’d need time cops, temporal attorneys slowing things down dramatically out of some weird fear that their client’s music has been used as a high-hat sound…

Anyway, for context, think of the inaudible commands used to trigger Internet-of-Things devices: “The ultrasonic pitches are embedded into TV commercials or are played when a user encounters an ad displayed in a computer browser,” Ars Technica reported back in 2015. “While the sound can’t be heard by the human ear, nearby tablets and smartphones can detect it. When they do, browser cookies can now pair a single user to multiple devices and keep track of what TV commercials the person sees, how long the person watches the ads, and whether the person acts on the ads by doing a Web search or buying a product.”

Or, as the New York Times wrote in 2018, “researchers in China and the United States have begun demonstrating that they can send hidden commands that are undetectable to the human ear to Apple’s Siri, Amazon’s Alexa and Google’s Assistant. Inside university labs, the researchers have been able to secretly activate the artificial intelligence systems on smartphones and smart speakers, making them dial phone numbers or open websites. In the wrong hands, the technology could be used to unlock doors, wire money or buy stuff online—simply with music playing over the radio.”

Now imagine some malevolent Aphex Twin doing audio-engineering work for a London advertising firm—or for the intelligence services of an adversarial nation-state—embedding ultra-fast sonic triggers in the audio environment. Only, here, it would actually be some weird dystopia in which the Internet of Things is secretly run by ubiquitous Afghan Whigs songs being played at 3,600-times their intended speed.

[Don’t miss Marc Weidenbaum’s book on Aphex Twin’s Selected Ambient Works Vol. 2.]

“Each dive feels like floating into a science fiction film”

[Image: Schmidt Ocean Institute, via ScienceDaily].

It’s hard to resist a headline claiming that “otherworldly mirror pools and mesmerizing landscapes” have been “discovered on [the] ocean floor.” Otherworldly mirror pools, like some sort of magic cauldron at the bottom of the sea.

But it’s equally hard to parse what exactly this article is stating. It would appear that unusual geological structures found 2,000 meters below the surface of the Gulf of California have had the superficial effect of resembling mirror images of the rocks below them:

While exploring hydrothermal vent and cold seep environments, Dr. Mandy Joye (University of Georgia), and her interdisciplinary research team discovered large venting mineral towers that reach up to 23 meters in height and 10 meters across. These towers featured numerous volcanic flanges that create the illusion of looking at a mirror when observing the superheated (366ºC) hydrothermal fluids beneath them.

In other words, this sounds more like a useful analogy: the rocks up here look like the rocks down there. It’s as if we’re looking into a mirror.

But what I wish this meant—and perhaps it does, but I’m simply misreading the article—is that bizarre thermal effects, combined with unusually high dissolved-metal content in the water, has created a series of mirror planes, or literally reflective, high-density water tables in the deep ocean that visually duplicate anything above or below them.

Because, if so, imagine the possibilities for turning these into lenses, like some wild, far-future, deep-sea water telescope in which light is bounced back and forth amongst dissolved-metal mirrors hovering in the water table. You could concentrate and focus light in the deep ocean, using naturally occurring, highly-mineralized thermal boundaries, perhaps suggesting a new type of visual-communication network in the sea. Future Navy signaling tech, using nothing but water.

Anyway, whatever the case may be, the poetry of this is incredible. Silvered planes in the ocean forming other-worldly, black labyrinths suddenly illuminated by the lights of a passing submarine.

Fault Lines/Point Clouds

[Image: Otherwise unrelated satellite view of the Pyramid Lake Fault (diagonal line from top left to bottom right), via Google Maps].

As a quick update to the Walker Lane post, there are some Walker Lane fault system LiDAR data sets available for download, if you’re able to play around with that sort of thing.

Walker Lane

[Image: The shadow of the San Andreas Fault emerges near sunset at Wallace Creek; photo by BLDGBLOG].

All four long-term readers of BLDGBLOG will know that I am obsessed with the San Andreas Fault, teaching an entire class about it at Columbia and visiting it whenever possible as a hiking destination.

The San Andreas is often a naturally stunning landscape—particularly in places like Wallace Creek, Tomales Bay, or even the area near Devil’s Punchbowl—but the fault’s symbolism, as the grinding edge of two vast tectonic plates, where worlds slide past one another toward an unimaginable planetary future, adds a somewhat mystical element to each visit. It’s like hiking along a gap through which a new version of the world will emerge.

I was thus instantly fascinated several years ago when I read about something called the Walker Lane, a huge region of land stretching roughly the entire length of the Eastern Sierra, out near the California/Nevada border, which some geologists now believe is the actual future edge of the North American continent—not the San Andreas. It is an “incipient” continental margin, in the language of structural geology.

[Image: My own sketch of the Walker Lane, based on Google Maps imagery].

In fact, the Walker Lane idea suggests, the San Andreas is so dramatically torqued out of alignment at a place northwest of Los Angeles known as the “Big Bend” that it might be doomed to go dormant over the course of several million years.

That’s good news for San Franciscans of the far future, but it means that a world-shattering amount of seismic strain will need to go somewhere, and that somewhere is a straight shot up the Eastern Sierra along the Walker Lane: a future mega-fault, like today’s San Andreas, that would stretch from the Gulf of California, up through the Mojave Desert, past Reno, and eventually back out again to the waters of the Pacific Ocean (most likely via southwest Oregon).

Much of this route, coincidentally, is followed closely by Route 395, which brings travelers past extinct volcanoes, over an active caldera, within a short drive of spectacular hot springs, and near the sites of several large earthquakes that have struck the region over the past 150 years.

That region—again, not the San Andreas—is where the true tectonic action is taking place, if the Walker Lane hypothesis is to be believed.

[Image: The gorgeous Hot Creek Geologic Site, along the Walker Lane; photo by BLDGBLOG].

In an absolute dream come true, I was able to turn this armchair obsession of mine into a new feature for Wired, and it went online this morning as part of their May 2019 issue.

For it, I spend some time out in the field with Nevada State Geologist James Faulds, a major proponent of the Walker Lane hypothesis. We visited a fault trench, we hiked along a growing rift southeast of Pyramid Lake, and we met several of his colleagues from the University of Nevada, Reno, including geodesist Bill Hammond and paleoseismologist Rich Koehler.

I also spoke with early advocates of the Walker Lane hypothesis, particularly Amos Nur and Tanya Atwater, both of whom have been suggesting, since at least the early 1990s, that something major might be in store for this under-studied region.

[Image: Coso Volcanic Field, near where the Eastern California Shear Zone meets the Walker Lane; photo by BLDGBLOG].

The Wired story is almost entirely focused on the science behind discovering the Walker Lane, from GPS geodesy to LiDAR, but there are also a few scattered thoughts on deep time and the vast imaginative horizon within which geologists operate. This comes mostly by way of Marcia Bjornerud’s new book Timefulness. There is also a brief look at indigenous seismic experience as allegedly recorded in Native American petroglyphs along the Walker Lane, via an interesting paper by Susan Hough.

But, on a more symbolic level, the Walker Lane totally captivates me, including how vertiginous and exciting it is to think about—let alone to hike along!—a new edge to the known world, a linear abyss emerging in the desert outside Los Angeles, slowly rifting north through hundreds of miles of dead volcanoes and disorganized fault lines, gradually pulling all of it together into one clear super-system, flooding with the waters of the Gulf of California, bringing a new version of the Earth’s surface into being in real-time.

In any case, check out the piece over at Wired if any of this sounds up your alley. The piece includes some great photos by Tabitha Soren.

Wandering Cliffs

[Image: ESA/Rosetta/MPS, via New Scientist].

Bringing to mind the landscape paintings of Peder Balke—or maybe Hokusai is more appropriate—entire cliffs seem to “wander” across the surface of Comet 67P.

“The hills may not be alive, but they are moving,” New Scientist reports. “The comet 67P/Churyumov-Gerasimenko has small cliffs that migrate across the landscape for months at a time,” apparently moving toward—not away from—the sun “at a rate of between 3 and 7 centimetres an hour.”

“The cliffs, or scarps, in question are only between 1 and 2 metres tall,” we read, “but on a comet the size of 67P, which is just 4 kilometres across at its longest point, they aren’t negligible—cliffs of a similar scale on Earth would be about 3 kilometres high.”

Frozen waves of geology, marching toward the sun in space.

Imagine a novel about a landscape photographer sent to record such sights, and the things she sees, the weird remoteness of it all, the camp sites and technical difficulties, where exposure time and depth-of-focus becomes an interplanetary concern, the ground pulsing continuously beneath her feet in a slow tide, a creeping sludge, that will never reach completion.

(Previously on BLDGBLOG: “We don’t have an algorithm for this”).

Black Foundations

[Images: Via Borderland Sciences].

The Sonic Doom of Vladimir Gavreau” by Gerry Vassilatos is a great example of speculative nonfiction—or, more specifically, of music history as conspiracy theory, where acoustic engineering gradually morphs into something closer to pseudo-science and occult mythology.

It goes all over the place, from the work of Oliver Messiaen to the physical threat of infrasound, and from the alleged Cold War weaponization of acoustics to the malignant “resonant profiles” of the buildings we work within today.

The anecdotes alone—whether or not you take them at their word—are amazing: “Walt Disney and his artists were once made seriously ill when a sound effect, intended for a short cartoon scene, was slowed down several times on a tape machine and amplified through a theater sound system. The original sound source was a soldering iron, whose buzzing 60 cycle tone was lowered five times to 12 cycles. This tone produced a lingering nausea in the crew which lasted for days.”

For anyone who’s read about the controversial “sonic attack” on U.S. ambassadorial staff in Cuba, or for fans of the book How to Wreck a Nice Beach, it’s probably a must-read.

While you’re there, if you’ve got time to kill, check out Vassilatos’s essay on “nocturnal auditory disturbances,” otherwise known as mysterious humming sounds with no discernible origin.

(Spotted via @robertcurgenven.)

Feral Cities, Indirect Streets, and Soft Fortification

[Image: “Thomas de Leu, engraver. Perspective view of an ideal city, 1602. From Jacques Perret, Architectura et perspectiva des fortifications & artifices de laques Perret. Courtesy CCA].

[Nearly a decade ago, I wrote a series of blog posts as part of a Fellowship at the Canadian Centre for Architecture. Those posts appear to be falling into an internet memory hole, so I thought I’d reproduce lightly edited versions of some of them here, simply for posterity.]

In 1564, the Tuscan urban planner, archaeologist, military theorist, mathematician, and writer Girolamo Maggi published a work of military urbanism called Della fortificatione delle città, written by his colleague Giacomo Fusto Castriotto.

That work, on the fortification of cities, devoted several passages to what might be called indirect or soft fortification: protecting an urban population from attack not through the use of heavy walls, inner citadels, or armed bastions—although the book is, of course, filled with such things—but through nothing more than a complex street plan.

Indirect streets and narrow walkways could be put to use, Castriotto argued, as agents of spatial disorientation, leading an invader everywhere but where they actually wanted to go. It was a kind of urban judo, or the city as martial art.

The city itself could be weaponized, in other words, its layout made militarily strategic: you could transform the speed at which your enemy arrives into exactly what would entrap him, lost, unable to retrace his footsteps, fatally vulnerable and spatially exposed.

The CCA exhibited much of its collected manuscripts on urban fortification seventeen years ago, under the name The Geometry of Defence: Fortification Treatises and Manuals, 1500–1800.

In the accompanying pamphlet, curator and former CCA historiographer Michael J. Lewis describes the geometric complexification that the fortified cities of the Renaissance underwent in the name of self-protection (Alberto Pérez-Gómez’s Architecture and the Crisis of Modern Science also contains a lengthy history of this same material and is worth consulting in full). A constantly shifting imbalance of power between the wall-builders and the invaders led to new spatializations of the metropolis. Whether due to the invention of gunpowder, massed assaults or simply new building techniques, the urban landscape was constantly reformatted according to the weapons that might be used against it.

Of course, this will be a very familiar story to most readers, so I don’t want to repeat it; I do, however, want to focus on the idea of forsaking mass—thick walls—for complexity in the name of strategic disorientation. There are well-known stories, for instance, of English coastal villages during World War II removing their road and street signs so as to prevent logical navigation by German aggressors, even erecting dummy signs to send confused Nazi paratroopers wandering off in the wrong direction.

But if the well-fortified Renaissance city could be seen, for the sake of argument, as something like the Hummer of military urbanism, what is the city-as-Bruce-Lee? A city that is lean, even physically underwhelming, but brilliantly fast and highly flexible? What is the city that needs no defensive walls at all?

[Image: “Unknown engraver. Series of views showing the development of the modern bastion system from its medieval origins. Plate A from Matthias Dögen, Matthiae Dögen Dramburgensis marchici Architectura militaris moderna, 1st ed. (Amsterdam, Ludovic Elzevir, 1647).” Courtesy CCA].

There are a variety of possible answers here, all of which would be interesting to discuss; but I’m most struck by the possibility that the phenomenon recently dubbed the “feral city” is, in a sense, an anti-fortress in precisely this spatial sense.

In a now-canonical 2003 paper for the Naval War College Review, author Richard J. Norton describes the feral city as “a great metropolis covering hundreds of square miles. Once a vital component in a national economy, this sprawling urban environment is now a vast collection of blighted buildings, an immense petri dish of both ancient and new diseases, a territory where the rule of law has long been replaced by near anarchy in which the only security available is that which is attained through brute power.”

From the perspective of a war planner or soldier, Norton explains, the feral city is spatially impenetrable; it is a maze resistant to aerial mapping and far too dangerous to explore on foot. Indeed, its “buildings, other structures, and subterranean spaces would offer nearly perfect protection from overhead sensors, whether satellites or unmanned aerial vehicles,” Norton writes, creating, in the process, an environment where soldiers are as likely to die from rabies, tetanus, and wild dog attacks as they are from armed combat.

I’m led to wonder here what a twenty-first-century defensive literature of the feral city might look like—from temporary barricades to cartographically incoherent slums experimenting with limited forms of micro-sovereignty. If the feral city is a city with no external walls but an infinite interior—endless spaces made of oblique architecture and indirect streets—then its ability to defend itself comes precisely through letting invaders in and fatally disorienting them, not by keeping them out.

So if a city does away with defensive walls altogether, what specific spatial strategies are left for it to protect itself? For instance, can a city deliberately be made feral as an act of preemptive self-defense—and, if so, what architectural steps would be necessary to achieve such a thing? Channeling Archigram—or perhaps even Cisco—we might call this the insurgent instant city complete with its own infrastructural practices, its own rogue designers, and its own anti-architects.

How, then, could the spatial practice of urban feralization be codified, and what architectural lessons might be learned if this were to happen?

Michael J. Lewis, describing the treatises on display at the CCA nearly two decades ago for The Geometry of Defence, refers to “fortification literature” or “the literature of the fortification,” including the publishing practices peculiar to this—for its time—top secret field of study. For example, privately circulated manuscripts, incomplete essayistic reflections, and even word-of-mouth gradually solidified into full-length narratives; only at that point were they intended to communicate finely tuned, often firsthand, military knowledge of a city under siege to anyone who might want to discover it, whether that was a king, a layperson, or an enemy general (indeed, much of the literature of fortification went on to the form the core of an emergent field known as urban planning).

In another fifty, one hundred, or even five hundred years, will there be a defensive literature of the feral city, its systematic description, techniques for its defense (or obliteration), and its urban logic (or lack thereof)? Even if only on the level of urban form, this would be a fascinating journey, going from Castriotto’s and Maggi’s indirect streets to whole cities gone wild in the name of resisting outside intervention.

As if all contemporary buildings have tinnitus: An Interview with Sabine von Fischer

[Image: “A tapping machine used in tests to evaluate the ability of floor coverings to reduce the transmission of impact sound from one floor to another in multi-family dwellings. Courtesy of the National Research Council Canada/Conseil national de recherches Canada,” via CCA].

[Nearly a decade ago, I wrote a series of blog posts as part of a Fellowship at the Canadian Centre for Architecture. Those posts appear to be falling into an internet memory hole, so I thought I’d reproduce lightly edited versions of some of them here, simply for posterity.]

Sabine von Fischer is an architectural historian with a specific interest in acoustics. Both Von Fischer and I were Fellows at the Canadian Centre for Architecture in the summer of 2010, where she was “researching the relationship between architecture and sound for a Ph.D.”

I was fascinated by the work she presented one afternoon during a lecture, and, later that week, I caught up with Von Fischer for a brief Q&A about her work. The following interview was originally published in 2010.

* * *

BLDGBLOG: In the most general terms, what is the topic of your dissertation?

Sabine von Fischer: The Ph.D. will be a history of 20th century architecture, with sound being the filter through which I want to look at different spatial configurations, building technologies, and the mutual effect of technologies and architecture on each other. The period that I am looking at is 1930-1970; this was a period when drastic changes in acoustic technology happened that continue to impact our environment today.

BLDGBLOG: Why do you begin in 1930?

Von Fischer: 1930 was the first publication of the tapping machine—that’s my case study for building acoustics. The 1970 date is maybe a little more vague—it’s a nice even number! But if I find other events, I might change it to 1971. [laughs]

BLDGBLOG: What was the tapping machine [seen in the image above]?

Von Fischer: The tapping machine, as it was first published in 1930 and as it was standardized in the 1960s, has five steel rods that hammer against the floor. The speed has changed a bit over time—and its speed is now standardized—but it just tramples on the floor. It’s a very basic machine.

The principle of the machine can be found in older apparatuses, such as those used in grinding food items, but this particular application was to simulate the sound of footsteps, furniture, and machines on the floors of multi-story buildings. In this form—with five hammers, which are electrically operated—it was first published in 1930, in the Journal of the Acoustical Society of America.

Everyone who has been working on building acoustics claims that, since 1923 or 1926, they’ve been doing similar tests on structure-borne sound, but almost all of those earlier tests were done with women in high-heeled shoes. High- heeled shoes make a very distinct sound. For impact-sound measurements, these women—and I have never seen a photo with a man or a documentation of a test done with a man—would wear high-heeled shoes, making a very standard noise.

Obviously, there have been comparative tests with men wearing different-soled shoes, evaluating the different ways of walking—or people who are very heavy, who produce different frequencies in the floor—but the National Bureau of Standards, in the period between the wars, had ladies in high-heeled shoes walking around inside buildings.

BLDGBLOG: Did the tapping machine put those women out of work, or was it used in parallel?

Von Fischer: I think they were replaced by the machine—but, then, people came back in over the last decades, mostly for measuring sound inside the same spaces. Because, once there is sound insulation in the floor, there’s a new problem: sound gets thrown back into the room. It’s not transmitted into the lower floors; it wanders around the same room. Especially with laminated flooring, there can be a strange sound when people are walking inside their own spaces. To test that, it’s done with people; the tapping machine wouldn’t simulate it well enough.

BLDGBLOG: I’m reminded of Nightingale floors in Japan: deliberately squeaky floors installed as a security measure against ninjas and assassins. The idea was to make the floor as acoustically noticeable as possible, rather than to mitigate its sonic properties.

Von Fischer: In Indian culture, as well, there’s a related example, where often the lady of the house would have a ring on her toes so that the other people in the house would know when she’s approaching. Different cultures have different traditions of using sound to mark someone’s presence in a building.

BLDGBLOG: Going back to your Ph.D. research, can you explain your idea of the “clairaudient building”?

Von Fischer: The “clairaudient building” is a metaphor, because normally you would say that a person is clairaudient.

BLDGBLOG: It’s like clairvoyant—clairaudient is a kind of supernatural “all-hearing”?

Von Fischer: Yes, I am using “clairaudience” to refer to early and post-war modern building systems, which transmitted sounds much more than any traditional way of building, creating problems that were unheard of before. Then, the word clairaudience, to me, also spans all of the technological machines and apparatuses that are used to broadcast sound inside architecture—speakers, microphones, intercoms, all the way up to surveillance systems and equipment. So buildings became clairaudient through technology.

BLDGBLOG: In that sense, a clairaudient building would be a space of total acoustic transparency?

Von Fischer: Yes, and I also think acoustic transparency is a quality of ambience—what became known as the “atmosphere” of a space. Very often, for example, you can observe that once rooms are silenced, other sounds are introduced artificially because, in the end, total silence doesn’t feel comfortable.

BLDGBLOG: That’s interesting—as someone who has very bad tinnitus, I need to have some kind of noise playing at night or I can’t go to sleep. So my wife—I hope!—has gotten used to the fact that we have to have fans on, even in the middle of winter, and sometimes more than one. But what’s interesting about tinnitus is that a silent room is not necessarily socially uncomfortable—in the sense that you need to think of something to say to the people around you—but, speaking only for myself, it can be acoustically uncomfortable. I can actually feel dizzy sometimes when it’s totally silent due to all the ringing in my ears.

Von Fischer: I would say that the term tinnitus can also be applied to buildings and to cities in general. I think sounds in cities and buildings have moved from being distinct signals, or individual sounds, to a constant background. There is often not one loud noise, but a mélange or a multiplicity of dampened—yet still audible—machines.

This will sound too harsh, but it’s as if all contemporary buildings have tinnitus. That’s an image I want to work on—a pathological metaphor for the state of sound in architecture.

[Image: Sulzer air-conditioning ad, ca. 1958, courtesy Sabine von Fischer/CCA].

BLDGBLOG: In your presentation you showed a photo of a man sitting at a desk, smoking a cigarette, listening to the sound of his air conditioner.

Von Fischer: Well, this is from 1958, a man being bothered by his air conditioner! The ad suggests that he should buy a new model because it’s more silent.

I’m fascinated by that image, because it visualizes the constant quest for new technologies that we need simply to make up for the downsides of the previous new technology. For instance, once rooms were air-conditioned, there was the sound of the air conditioner that we had to make up for; and, I assume, this new air conditioner in 1958 was not as silent as we are used to now—and, even today, air conditioners are not silent at all.

BLDGBLOG: The example of air conditioner noise points to an interesting line between the equipment of everyday domesticity—refrigerators, ceiling fans, air conditioning units, even tea kettles—and what could be called proto-musical instruments. They are things that you can tune to make the world quieter or more melodious.

Von Fischer: That’s definitely something I am interested in, although I think that this specific kind of sound design is something that only came after 1970.

It’s all a question of attitudes or personal taste, so tuning everyday objects can be a quite difficult enterprise. There will never be a consensus on what a good sound is. That’s why the noise regulations in cities are so rigid, because there are so many different reactions and compromises in order to avoid being a nuisance to someone.

Different sounds can also mean different things. Lawnmowers are always loud because, if a lawnmower was very quiet, maybe people wouldn’t buy it for fear that a quiet lawnmower isn’t strong enough. And men’s shavers are much louder than ladies’ shavers, even though they do the same thing. There are a bunch of products around us that are already heavily sound-designed.

BLDGBLOG: Even police sirens are being redesigned. In New York City, for instance, a new siren called the “Rumbler” was introduced last autumn that uses subwoofers and heavy bass to cut through urban noise (and through the music you might be listening to in your car). It’s like sonic warfare—noise v. noise.

Von Fischer: There was also a project by Max Neuhaus, from the 1970s, where he designed new sirens for emergency vehicles in New York City. His contention was that drivers and pedestrians in the city could not locate where the existing siren sounds were coming from. You would hear a siren somewhere but not know where it was. So he designed a better sound that, he claimed, you could hear which direction it was coming from. He invested a lot in the project, and I think he was quite frustrated when it never made it into the actual system.

BLDGBLOG: Finally, when it comes to specific resources here at the CCA, are you here more for the research & writing time, or is there a specific object or text in the archives that you came to see?

Von Fischer: It’s primarily to have the freedom to really think and focus, but there are things that I want to look at. The archive here is very strong in post-war visionary projects, and I’m looking at their ideas of utopia and the role of technology in buildings and interiors. I’m interested in the audio component of the social utopias of the 1960s—to see what role sound played in projects of this period. One famous example would be François Dallegret’s illustrations for Reyner Banham’s text “A Home is not a House” from 1965.