Terrestrial Concussion / Infinite Half-Life

[Image: Courtesy Xenon Collaboration, via ScienceNews].

Earthquakes, popularly seen as discrete, large-scale events that occur only once every few years—once a decade, once a century, once every thousand years—turn out to be nearly continuous. There are always earthquakes.

According to ScienceNews, “millions of tiny, undetected earthquakes rumble through the ground” every day in California. These are “quakes of such small magnitude that their signals were previously too small to be separated from noise.”

In other words, while we wait for the Big One—a true seismic event with the power to punctuate and interrupt everyday life—there are millions of smaller earthquakes constantly rattling the floors, walls, and roads we consider stable.

I’m reminded of a recent article in the New York Times about football player Ryan Miller. “Miller has had 10 concussions in all,” we read, “and that is to understate his battering. The brain sits in fluid inside the armor of a skull, and even nonconcussive whacks can result in brain colliding with bone. A couple of hard hits can come to resemble a concussion. The average football player, according to Cantu, takes 600 to 800 hits in high school and 800 to 1,000 in college.”

Concussions are like earthquakes, in other words: we wait for the Big One, but this means that, by definition, we miss the cumulative effects of all the little shocks along the way. Everything is moving; the earth is not stable; the landscape is jolting and cracking at a concussive rate, every day, beneath our feet.

On the opposite side of this temporal spectrum, the same website, ScienceNews, also reported that some radioactive decay takes so long, they can outlast our current universe.

“It takes 1 trillion times the age of the universe for a xenon-124 sample to shrink by half,” we read. “The decay, seen in xenon-124 atoms, happens so sparingly that it would take 18 sextillion years (18 followed by 21 zeros) for a sample of xenon-124 to shrink by half, making the decay extremely difficult to detect.”

That’s a bit of an understatement: it means you would need a machine significantly older than the universe to detect and measure these moments of decay.

[Image: Xenon, via Images of Elements].

The breakdown of this specific example—the element xenon-124—involves something called “two-neutrino double electron capture,” and I won’t even pretend to understand what it means. Nevertheless, what interests me here is the implied possibility that, well, on a universal timescale, everything is decaying. Everything is breaking down. But it occurs on a scale so huge it is inaccessible to human experience, certainly, but perhaps even to human cognition.

Imagine an element that decays only once every 750 trillion years. (Our current universe is 14 billion years old.) Imagine a creature living 749.999 trillion years, arrogantly thinking that its world is immortal.

In any case, this feels like the exact inverse of the previous example: while we’re on the hunt for radioactive decay, or while we’re out there looking for millions of overlooked mini-quakes and micro-concussions, we might actually miss detecting these massive punctuations of time, epic cycles so rare and daunting that our own universe cannot accommodate them.

For those attentive enough, in other words, there are concussions and earthquakes constantly; yet, on a large-enough timescale, everything decays, everything breaks down, everything has a half-life. Everything is radioactive. In the midst of all that, we make breakfast and take the subway to work.

300 Years of Dust

I’m late to the news that the ancient Akkadian Empire might have collapsed due to “dust activity” that “persisted for 300 years.” As a resident of Los Angeles, it’s sobering to read.

“Archaeologists have long been baffled by the abrupt abandonment of northern Mesopotamian settlements roughly 4,200 years ago,” Eos reports. This otherwise mysterious abandonment might have been catalyzed by three centuries of dust—“dust for 300 years”—arising from extreme drought and aridity.

The dust was so bad, in fact, it left a geological record in regional stalactites.

Perhaps that’s how the end will come, as a slow but relentless accumulation of dust on windowsills—in California, Arizona, Nevada—a civilizational collapse that should have been signaled, in retrospect, by the rapid growth of the house-cleaning economy, but that, for at least a generation, will take the form of puzzled homeowners wiping wetted cloths along wood trim, wondering if there’s something going on outside.

“Each dive feels like floating into a science fiction film”

[Image: Schmidt Ocean Institute, via ScienceDaily].

It’s hard to resist a headline claiming that “otherworldly mirror pools and mesmerizing landscapes” have been “discovered on [the] ocean floor.” Otherworldly mirror pools, like some sort of magic cauldron at the bottom of the sea.

But it’s equally hard to parse what exactly this article is stating. It would appear that unusual geological structures found 2,000 meters below the surface of the Gulf of California have had the superficial effect of resembling mirror images of the rocks below them:

While exploring hydrothermal vent and cold seep environments, Dr. Mandy Joye (University of Georgia), and her interdisciplinary research team discovered large venting mineral towers that reach up to 23 meters in height and 10 meters across. These towers featured numerous volcanic flanges that create the illusion of looking at a mirror when observing the superheated (366ºC) hydrothermal fluids beneath them.

In other words, this sounds more like a useful analogy: the rocks up here look like the rocks down there. It’s as if we’re looking into a mirror.

But what I wish this meant—and perhaps it does, but I’m simply misreading the article—is that bizarre thermal effects, combined with unusually high dissolved-metal content in the water, has created a series of mirror planes, or literally reflective, high-density water tables in the deep ocean that visually duplicate anything above or below them.

Because, if so, imagine the possibilities for turning these into lenses, like some wild, far-future, deep-sea water telescope in which light is bounced back and forth amongst dissolved-metal mirrors hovering in the water table. You could concentrate and focus light in the deep ocean, using naturally occurring, highly-mineralized thermal boundaries, perhaps suggesting a new type of visual-communication network in the sea. Future Navy signaling tech, using nothing but water.

Anyway, whatever the case may be, the poetry of this is incredible. Silvered planes in the ocean forming other-worldly, black labyrinths suddenly illuminated by the lights of a passing submarine.

Fault Lines/Point Clouds

[Image: Otherwise unrelated satellite view of the Pyramid Lake Fault (diagonal line from top left to bottom right), via Google Maps].

As a quick update to the Walker Lane post, there are some Walker Lane fault system LiDAR data sets available for download, if you’re able to play around with that sort of thing.

Walker Lane

[Image: The shadow of the San Andreas Fault emerges near sunset at Wallace Creek; photo by BLDGBLOG].

All four long-term readers of BLDGBLOG will know that I am obsessed with the San Andreas Fault, teaching an entire class about it at Columbia and visiting it whenever possible as a hiking destination.

The San Andreas is often a naturally stunning landscape—particularly in places like Wallace Creek, Tomales Bay, or even the area near Devil’s Punchbowl—but the fault’s symbolism, as the grinding edge of two vast tectonic plates, where worlds slide past one another toward an unimaginable planetary future, adds a somewhat mystical element to each visit. It’s like hiking along a gap through which a new version of the world will emerge.

I was thus instantly fascinated several years ago when I read about something called the Walker Lane, a huge region of land stretching roughly the entire length of the Eastern Sierra, out near the California/Nevada border, which some geologists now believe is the actual future edge of the North American continent—not the San Andreas. It is an “incipient” continental margin, in the language of structural geology.

[Image: My own sketch of the Walker Lane, based on Google Maps imagery].

In fact, the Walker Lane idea suggests, the San Andreas is so dramatically torqued out of alignment at a place northwest of Los Angeles known as the “Big Bend” that it might be doomed to go dormant over the course of several million years.

That’s good news for San Franciscans of the far future, but it means that a world-shattering amount of seismic strain will need to go somewhere, and that somewhere is a straight shot up the Eastern Sierra along the Walker Lane: a future mega-fault, like today’s San Andreas, that would stretch from the Gulf of California, up through the Mojave Desert, past Reno, and eventually back out again to the waters of the Pacific Ocean (most likely via southwest Oregon).

Much of this route, coincidentally, is followed closely by Route 395, which brings travelers past extinct volcanoes, over an active caldera, within a short drive of spectacular hot springs, and near the sites of several large earthquakes that have struck the region over the past 150 years.

That region—again, not the San Andreas—is where the true tectonic action is taking place, if the Walker Lane hypothesis is to be believed.

[Image: The gorgeous Hot Creek Geologic Site, along the Walker Lane; photo by BLDGBLOG].

In an absolute dream come true, I was able to turn this armchair obsession of mine into a new feature for Wired, and it went online this morning as part of their May 2019 issue.

For it, I spend some time out in the field with Nevada State Geologist James Faulds, a major proponent of the Walker Lane hypothesis. We visited a fault trench, we hiked along a growing rift southeast of Pyramid Lake, and we met several of his colleagues from the University of Nevada, Reno, including geodesist Bill Hammond and paleoseismologist Rich Koehler.

I also spoke with early advocates of the Walker Lane hypothesis, particularly Amos Nur and Tanya Atwater, both of whom have been suggesting, since at least the early 1990s, that something major might be in store for this under-studied region.

[Image: Coso Volcanic Field, near where the Eastern California Shear Zone meets the Walker Lane; photo by BLDGBLOG].

The Wired story is almost entirely focused on the science behind discovering the Walker Lane, from GPS geodesy to LiDAR, but there are also a few scattered thoughts on deep time and the vast imaginative horizon within which geologists operate. This comes mostly by way of Marcia Bjornerud’s new book Timefulness. There is also a brief look at indigenous seismic experience as allegedly recorded in Native American petroglyphs along the Walker Lane, via an interesting paper by Susan Hough.

But, on a more symbolic level, the Walker Lane totally captivates me, including how vertiginous and exciting it is to think about—let alone to hike along!—a new edge to the known world, a linear abyss emerging in the desert outside Los Angeles, slowly rifting north through hundreds of miles of dead volcanoes and disorganized fault lines, gradually pulling all of it together into one clear super-system, flooding with the waters of the Gulf of California, bringing a new version of the Earth’s surface into being in real-time.

In any case, check out the piece over at Wired if any of this sounds up your alley. The piece includes some great photos by Tabitha Soren.

Wandering Cliffs

[Image: ESA/Rosetta/MPS, via New Scientist].

Bringing to mind the landscape paintings of Peder Balke—or maybe Hokusai is more appropriate—entire cliffs seem to “wander” across the surface of Comet 67P.

“The hills may not be alive, but they are moving,” New Scientist reports. “The comet 67P/Churyumov-Gerasimenko has small cliffs that migrate across the landscape for months at a time,” apparently moving toward—not away from—the sun “at a rate of between 3 and 7 centimetres an hour.”

“The cliffs, or scarps, in question are only between 1 and 2 metres tall,” we read, “but on a comet the size of 67P, which is just 4 kilometres across at its longest point, they aren’t negligible—cliffs of a similar scale on Earth would be about 3 kilometres high.”

Frozen waves of geology, marching toward the sun in space.

Imagine a novel about a landscape photographer sent to record such sights, and the things she sees, the weird remoteness of it all, the camp sites and technical difficulties, where exposure time and depth-of-focus becomes an interplanetary concern, the ground pulsing continuously beneath her feet in a slow tide, a creeping sludge, that will never reach completion.

(Previously on BLDGBLOG: “We don’t have an algorithm for this”).

Design Futures, Sacred Groves

[Image: From Growing A Hidden Architecture by Christian Kerrigan].

[Nearly a decade ago, I wrote a series of blog posts as part of a Fellowship at the Canadian Centre for Architecture. Those posts appear to be falling into an internet memory hole, so I thought I’d reproduce lightly edited versions of some of them here, simply for posterity.]

Toward the end of 2009, the journal Studies in the History of Gardens & Designed Landscapes published an interesting paper by garden historian Patrick Bowe, called “The Sacred Groves of Ancient Greece.”

Specialized landscapes animated by very particular forms of cultural use, sacred groves “held a significant place in ancient Greek life over ten centuries,” Bowe writes. Indeed, “They formed significant landmarks in the landscape, both urban and rural.”

Geographers described them. Poets evoked them. Philosophers discussed them. In them, natural woodland was conserved and new wood planted, primarily for religious, but also for recreational, purposes. Architectural and sculptural elements were disposed. Prominent natural features were highlighted. Some individual trees, being considered sacred, were also conserved. In these various activities, the beginnings of the Western tradition of designed landscapes can be found.

Bowe’s ensuing history of sacred groves describes these “ritual zones” of the forest in terms of “the physical aspects of sacred groves, their location and size, the different kinds of trees of which they were composed, the architectural and sculptural elements that were installed in them and the adaptation for use of some of the natural features located in them.”

This has the effect, he notes, of filling a noticeable hole in historical scholarship: “No detailed description of a sacred grove survives from ancient Greek literature. However, a compilation of the many passing and diverse references in the literature, dating from the eighth century BC”—by which Bowe means Homer—“to the second century AD”—by which he means Pausanias—“may provide us with a composite picture.”

Somewhat obviously, sacred groves don’t leave much to see in the archaeological record—”archaeological evidence is sparse,” Bowe writes with understatement—as their vegetation dies, rots, spreads, or is deliberately torn up and replaced over time (all of the above, in fact, often erase Greek sacred groves from the terrestrial record).

Landscape historians are thus left searching for other sources of information about the ancient world’s enigmatic sacred land-use patterns. Interestingly, these sources include poems and even coinage—archaeology by way of numismatics. Bowe writes that “the evidence of contemporary coins” implies what these groves might have looked like, these coins’ obverse images depicting “boundary walls and entrances,” gates and artificially arranged stone features, as certain groves were shown in miniature on the backs of these moneyed pieces.

The very idea that money might serve as a useful object of study in an art historical survey of lost landscapes is inspiringly unexpected. A visual history of landscape told entirely through coins!

In any case, Bowe assembles a list of tree species most often associated with these sacred sites, including cypress, poplar, olive, oak, cedar, willow, plane, ash, apple, pine, and even palm trees. These groves were quite varied locations, botanically speaking, and they consisted of both wild and cultivated varieties of the trees at hand.

It simply wasn’t the case that a sacred grove had to be one particular type of tree, or that it had to be wild; the sacred qualities came from how the grove was treated, used, interpreted, and even deliberately rebuilt. In the latter case, adding small architectural features, including fences and gates, or even statuettes to the grove were ways of making sacred what in other circumstances might have been a mere garden.

While Bowe’s literary-numismatic archaeology of sacred groves is already fascinating, I found myself wondering what sorts of uniquely specific groves or small forests of our own time might be seen, even if only millennia from now, as “sacred” in some way or another. The “sacred grove,” seen in this light, would really be a kind of specialized forestry service, and thus something interpretatively present in a variety of surprising sites.

After all, it is distinctly possible that a landscape now retroactively seen as sacred might not have been anything of the sort; perhaps it was simply being grown for timber; perhaps it was the subject of a property dispute; perhaps it was over-run with insects for a decade or two and thus left untouched. It should always be assumed, in other words, that ancient sites we jump to call “sacred” might actually have been utterly mundane.

Accordingly, I’ve put together a short, entirely subjective, and by no means anywhere near exhaustive list of a few speculative landscape design proposals and real-life forestry sites that strike me as particularly worthy of consideration in the context of the ancient Greek sacred grove. If, in some future catalog of lost landscapes, one of the following sites was to be listed alongside the sacred groves of a forgotten civilization, how might that transform our understanding of their intended spatial role?

Consider this list nothing more than a brief conversation-starter.

The Shapely Grove

[Image: From “Atree?” by the Bureau of Architecture, Research, and Design (BOARD)].

Rotterdam-based design firm Bureau of Architecture, Research, and Design (BOARD) recently proposed a grove of twisted and looping arboreal forms called “Atree?

[Image: From “Atree?” by the Bureau of Architecture, Research, and Design (BOARD)].

“Imagine a project that does not need to be constructed,” they write, “because—being a tree—it grows by itself.”

Such a project only needs to be planted. Therefore the transportation of the materials for such a project is very energy efficient, because as a matter of fact, no major transportation of materials is actually necessary. The only materials to be transported are the seeds for planting. And the only energy spent is to prevent hastiness and impetuousness as such a project needs a lot of time and patience to grow.

Using clip-on bioplastic molds that “can easily be transported by bike to the site and fixed simply to the trees,” along with “a fast growing willow that reaches a height of more than two meters in only one year,” BOARD’s roller coaster of a grove would put even Axel Erlandson’s so-called tree circus to shame.

[Image: From “Atree?” by the Bureau of Architecture, Research, and Design (BOARD)].

Are these formal manipulations of a traditional thicket nothing more than stylistic play—mere ornamental tweaking—or do they reveal something more fundamental about how we can relate to the growth and tending of global forests?

Further, could a grove of deliberately misshapen trees—that is, trees that have been formally remade—be archaeologically mistaken for a place of religious significance? If so, what beliefs might we assume were being celebrated in these carnivalesque examples of what Bowe would call “ritual zones”—and who might we think had constructed them? Perhaps a strange race of druidic geometers once turned their forests into prayers and diagrams.

The Moon Trees of Apollo
One of the strangest entries on this list is also very real: the so-called Moon Trees are a distributed forest of redwood, sycamore, loblolly pine, sweetgum, and douglas fir saplings grown from seeds that were taken to the moon and back as part of the Apollo space program.

Apollo 14 launched in the late afternoon of January 31, 1971 on what was to be our third trip to the lunar surface. Five days later Alan Shepard and Edgar Mitchell walked on the Moon while Stuart Roosa, a former U.S. Forest Service smoke jumper, orbited above in the command module. Packed in small containers in Roosa’s personal kit were hundreds of tree seeds, part of a joint NASA/USFS project. Upon return to Earth, the seeds were germinated by the Forest Service. Known as the “Moon Trees,” the resulting seedlings were planted throughout the United States (often as part of the nation’s bicentennial in 1976) and the world. They stand as a tribute to astronaut Roosa and the Apollo program.

Fantastically, grafts and seeds from the original Moon Trees have since been planted elsewhere, producing second-generation Moon Trees that grow freely in private backyards, public parks, and open forests around the planet.

Compare Moon Trees to the space seed program run by the Chinese government, “a mission that will expose 2000 seeds to cosmic radiation and microgravity.” These cosmically exposed seeds have since been planted here on earth, in the hope of producing a slightly ominous-sounding batch of “super-crops.”

But what about a super-forest—cosmically exposed Moon Trees grown on a continental scale, in a vast sacred grove shaped by radiation from deep space?

The Duplicative Forest

[Image: The Duplicative Forest—17,000 acres of identical trees—courtesy of Atlas Obscura].

I have written elsewhere about a place in Oregon called the duplicative forest, but it seems worth mentioning again in the present context. The “duplicative forest” is a 17,000-acre farm whose poplar trees are “all the same height and thickness,” we read courtesy of Atlas Obscura, as well as “evenly spaced in all directions. The effect is compounded when blasting by at 75 mph. If you look for too long the strobe effect may induce seizures.”

The discovery of an optically mesmerizing forest landscape, one with potential neurological effects on its visitors, and one that was very clearly planted according to an artificial geometric plan, will perhaps not instantly seem like a tree farm several hundred years from now; until its actual quotidian purpose is deduced, the duplicative-forest-as-sacred-grove would be a wonderfully odd thing to ponder.

Jaguar Wood
In England, the car company Jaguar has planted a forest of walnut trees, partially to offset its harvesting needs for the fine wood used in its cars’ interiors. As Jaguar themselves describe the specialty landscape:

The Jaguar Walnut Wood is located at Lount in the heart of Leicestershire, less than 50km from Jaguar’s UK HQ. It was first planted on former farmland in 2001, but there are now more than 13,000 walnut trees and 70,000 other trees in a scenic 80-hectare woodland. Within it is a 27-hectare experimental zone researching the growth of different varieties of walnut tree for use as a hardwood timber and as a source of nuts.

The mathematical logic of an “offset” landscape—something planted or maintained in one location in order to make up for the loss or insufficient quantity of something elsewhere, forming an economic chain of surrogacy and doubling—is already quite fascinating, but a forest specially cultivated by an automotive firm adds an interesting touch.

While wood from these groves does not actually make it into Jaguar cars, the “experimental zone” inside the forest might seem rather regal—or perhaps simply surreal—to anyone stumbling upon records of it in a thousand years’ time.

And who knows: perhaps we might even someday discover that a small grove of walnut trees growing on a hill in upstate New York, on a distant tributary of the Hudson, was actually planted for no other reason than to panel the interior walls of a specific skyscraper in 1950s Manhattan, a grove now derelict and teeming with weeds, its original purpose gone, the rooms it was once meant to panel now themselves long dismantled; or an entire forest somewhere north of Athens, Greece, originally planted to serve as wood stock for a Mediterranean fleet, its trunks and branches grown only for hulling warships, now lies abandoned, bearing no historical trace of that earlier purpose.

How do we account for these missing histories of specialty groves in our sense of landscape mythology?

Her Majesty’s Shipbuilding Forest
The New Forest in England was, in fact, once extensively used and harvested for the purpose of Royal shipbuilding. From the period 1685 to 1875, “timber requirements of the Navy dominate[d] the Forest,” we read in a short history of the landscape. There are even now remnant groves left over from those ship-planting days:

Admiral Nelson, ever mindful of the needs of shipbuilding, visited in 1802 and declared the “finest timber in the kingdom” had sunk to a deplorable state! So, 30 million acorns were planted across 11,000 acres. But before the oaks were half grown, they were redundant, replaced by iron and steel in the shipbuilders’ yards. Thanks to Nelson, however, the forest now contains the country’s largest area of mature oak.

In other words, scattered across an area of nearly 11,000 acres are trees that never became ships—escaping that fate in which whole forests would go to war at sea, their wood sailing into battle in the form of imperial fleets.

We might ask, then: Could a sacred grove be something in which future ships are deliberately cultivated? For me, the most interesting aspect of that question would be the idea that, hovering negatively like a ghost around a forest’s growing branches, are the devices, ships, buildings, and machines that those forests are meant to become—like wooden Transformers, whole groves will unlock their roots from shattered bedrock, clip together in filigrees of undergrowth, and assemble into some vast and fearsome battleship, which then floats out with a monstrous roar into the wine-dark sea.

Growing a Hidden Architecture

[Image: From Growing A Hidden Architecture by Christian Kerrigan].

As it happens, this very idea was the premise of a fascinating graduate student project at the Bartlett School of Architecture in London several years ago.

[Image: From Growing A Hidden Architecture by Christian Kerrigan].

For Growing A Hidden Architecture, Christian Kerrigan proposed an awe-inspiring series of contraptions—collars, tourniquets, hinges, corsets, and belts—that could be attached to still-growing trees, bending and shaping their growth into a functioning, sea-ready ship.

[Images: From Growing A Hidden Architecture by Christian Kerrigan].

“By controlling the manipulation of refined armatures, calibrating devices and designed corsets,” Kerrigan writes, “the system is capable of controlling the growth of a ship inside the forest. The ship will grow over a period of 200 years and will exist as a hidden architecture inside the trees. The ship growing in the forest is the ship from the ‘Rime of the Ancient Mariner,’ a tale of man’s relationship to mortality.”

[Image: From Growing A Hidden Architecture by Christian Kerrigan].

In a particularly awesome detail, “the artificial system harvests resin from the trees to measure time passing”:

Slowly growing to completion, the end of the system within the forest is signalled by the Amber Clock, the resin cycles in the trees keeping time. The armatures alter the geometries of the copse with technologies, which are spliced into the hull of the ship.

Kerrigan’s vision of a ship self-assembling through carefully restricted tree growth—and the architectural implications of such a technique—is both astonishing and powerful.

[Image: From Growing A Hidden Architecture by Christian Kerrigan].

The entirety of his project is worth exploring in full.

The Grove as Growth Assembly

[Image: From Growth Assembly by Sascha Pohflepp, Alexandra Daisy Ginsberg and Sion Ap Tomos].

Rounding out this short list of possible “sacred groves” is a project by Sascha Pohflepp, Alexandra Daisy Ginsberg and illustrator Sion Ap Tomos that explored a similar idea to Kerrigan’s.

[Image: From Growth Assembly by Sascha Pohflepp, Alexandra Daisy Ginsberg and Sion Ap Tomos].

Called Growth Assembly, their project included the added splash of gene-splicing: the trio proposed a grove of genetically modified trees that could sprout machine-parts instead of fruit.

Pohflepp writes: “Coded into the DNA of a plant, product parts grow within the supporting system of the plant’s structure. When fully developed, they are stripped like a walnut from its shell or corn from its husk, ready for assembly.”

[Image: From Growth Assembly by Sascha Pohflepp, Alexandra Daisy Ginsberg and Sion Ap Tomos].

This genetic revolution in plant-based manufacturing—wherein the gears used in your car’s engine might actually be the hard fruit of modified trees—would have a corresponding effect on the world’s economic landscape:

Shops have evolved into factory farms as licensed products are grown where sold. Large items take time to grow and are more expensive while small ones are more affordable. The postal service delivers lightweight seed-packets for domestic manufacturers.

Like some Industrial Age “Jack and the Beanstalk,” you simply plant a few seeds and watch as vast, living factories soon grow.

[Image: From Growth Assembly by Sascha Pohflepp, Alexandra Daisy Ginsberg and Sion Ap Tomos].

So, with these projects in mind, and having read Bowe’s essay, what other unexpected forest landscapes might we suggest as viable candidates for inclusion in a broadened definition of the sacred grove—a new kind of sacred sci-fi, with mutated trees and fruitful juxtapositions? What is the design future of the sacred grove?


[Image: Via Space Saloon].

For the second year in a row, Space Saloon’s Fieldworks program will take place out in the Morongo Valley, in the California desert near both the San Andreas Fault and Joshua Tree National Park.

Fieldworks bills itself as an “experimental design-build festival,” hosted by a “traveling group that investigates perceptions of place.” The program includes guest lectures, hands-on workshops in digital site-documentation, charrettes, and an eventual build-out of a few pavilion-like proposals.

[Image: Via Space Saloon].

You can read more at the Fieldworks website, including this useful FAQ, but it looks like a great opportunity to get your hands dirty in an extraordinary landscape only two hours or so outside Los Angeles.

Click through for the registration page.

Great Basin Autoglyphs

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

A new exhibition of work by photographer Michael Light opened last night at the Hosfelt Gallery in San Francisco.

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

Called “Great Basin Autoglyphs and Pleistoseas,” the work is part of an “ongoing aerial photographic survey of the arid American West… moving from habited, placed settlements into pure space and its attendant emptiness.”

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

Along the way, Light reframes human civilization as a series of abstract lines inscribed at vast scale through remote areas, less like infrastructure and more like planetary graffiti.

“Twelve thousand years ago,” Light writes, “the Great Basin—that part of the country between California and Utah where water does not drain to the ocean—was 900 feet underwater, covered by two vast and now largely evaporated historical lakes, Bonneville and Lahontan. The remnants of Lake Bonneville today are the Great Salt Lake in Utah and its eponymous salt flats, while the most famous portion of the former Lake Lahontan is the Black Rock Desert in Nevada, an alkali bed that floods and dries each year, creating the flattest land on earth.”

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

Light is an incredibly interesting photographer, and has done everything from wreck-diving old military ships scuttled during nuclear weapons tests in the South Pacific to releasing a book of retouched archival photos from the Apollo Program.

Nicola Twilley and I interviewed Light several years ago for our Venue project, where we discussed these projects at length.

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

In you’re near San Francisco, stop by the Hosfelt Gallery before March 16, 2019, and also consider ordering a copy of Light’s forthcoming book, Lake Lahontan/Lake Bonneville, with related images.

Computational Landscape Architecture

[Image: An otherwise unrelated photo, via FNN/Colossal].

In 2017, researchers attending the annual Cable-Tec Expo presented a paper looking at the effect certain trees can have on wireless-signal propagation in the landscape.

In “North America in general,” the researchers wrote, “large swathes of geography are dominated by trees and other foliage which, depending on seasonal growth and longitude, can interrupt a good many LOS [line of sight] apertures between BS [a base station] and client and present performance challenges.”

That is to say, parts of North America are heavily forested enough that the landscape itself has a negative effect on signal performance, including domestic and regional WiFi.

Their presentation included a graph analyzing the effects that particular tree species—pine, spruce, maple—can have on wireless signals. “The impact of deciduous and conifer trees (under gusty wind conditions) suggest that the leaf density from the conifer more frequently produces heavy link losses and these,” they explain.

In other words, for the sake of signals, plant deciduous.

[Image: From “Can a Fixed Wireless Last 100m Connection Really Compete with a Wired Connection and Will 5G Really Enable this Opportunity?”]

What interests me here is the possibility that we might someday begin landscaping our suburbs, our corporate campuses, our urban business parks, according to which species of vegetation are less likely to block WiFi.

There is already a move toward xeriscaping, for example—or planting indigenous species tolerant of arid climates in cities such as Phoenix and Los Angeles—but what about WiFi-scaping, landscapes sown specifically for their electromagnetic-propagation effects?

One of my favorite studies of the last decade looked at whether trees planted around a fuel-storage depot in England known as Buncefield might have inadvertently caused a massive gas explosion. In this case, though, a site’s landscaping might instead cause data-propagation errors.

You can imagine, for example, vindictive foreign governments purposefully surrounding an American embassy with trees unpermissive of signal propagation, even deliberately donating specific indoor plant species known for their negative effects on electromagnetic signals. A kind of living, vegetative Faraday cage.

Hostile houseplant-gifting networks. Like the plot of some future David Cronenberg film.

[Image: Lucian Freud, “Interior in Paddington” (1951), via Tate Britain].

In any case, this brings to mind many things.

A recent study published in the MIT Technology Review, for example, suggested that WiFi could be used to spy on human movements inside architecture. The paper documents how researchers used WiFi “to work out the position, actions, and movement of individuals” inside otherwise sealed rooms.

It’s worth recalling the use of WiFi as a burglar alarm, whereby unexpected human intruders can be detected when their bodies perturb the local WiFi field. Is that someone walking toward you in the dark…? Your router might see them before you do, as their movement cause bulges and malformations in your home’s WiFi.

The more relevant implication, however, is that you could potentially use WiFi to spy on movements in the broader landscape. Deciduous forests would be easier than coniferous, it seems.

You could soak a forest in electromagnetic signals—yes, I know this is not the greatest idea—and measure those signals’ reflection to count, say, active birds, beetles, badgers, or other participants in the wilderness. It’s WiFi as a tool for ecological analysis: you set up a router and watch as its signals reverberate through the forests and fields. Animal radar.

Finally, consider a study published last year that suggested WiFi signals could be turned into a computational device. According to researchers Philipp del Hougne and Geoffroy Lerose, you can “perform analog computation with Wi-Fi waves reverberating in a room.”

Read their paper to find out more, but what seems so interesting in the present context is the idea that forested landscapes could be grown to cultivate their WiFi computational ability. Like botanical pinball machines, you could design, plant, and grow entire forests based on their ability to reflect future WiFi signals in very specific ways, artificial landscapes destined to perform computational tasks.

A bitcoin forest. WiFi forestry.

Or forest supercomputers, pruned for their ability to plumb the mathematical sublime.

(Thanks to Jameson Zimmer for the tip re: WiFI and trees. Earlier on BLDGBLOG: The Design Forest of the Sacred Grove, Forest Tone, and many others.)


[Image: Typing messages with Katie Holten’s tree alphabet].

You may recall artist Katie Holten’s tree typeface, written-up here a few years back.

Holten has now created a whole new tree alphabet, based on trees growing in the New York City region. “Each letter of the Latin alphabet is assigned a drawing of a tree from the NYC Parks Department’s existing native and non-native trees,” Holten writes, “as well as species that are to be planted as a result of the changing climate. For example, A = Ash.”

That typeface is also available as a free download, so you can type your own forests into existence with abandon. All the world’s literature, translated into trees.

What’s more, Holten is overseeing a program to actually plant the trees referenced by the alphabet, resulting in what she calls an “an alphabetical planting palette: people can give us their messages and we’ll plant them around the city with real trees.”

Follow the project on Holten’s website for updates.