Warnings Along the Inundation Line

[Image: Cover from An Incomplete Atlas of Stones by Elise Hunchuck].

After the Tōhoku tsunami in 2011, one of the most ominous details revealed about the coast where it struck, for those of us not familiar with the region, was that a series of warning stones stand there overlooking the sea, carved with sayings such as, “Do not build your homes below this point!

As part of her recent thesis at the Daniels Faculty of Architecture, Landscape, and Design—a school of the University of Toronto—landscape architect Elise Hunchuck spent the summer of 2015 traveling around Japan’s Sanriku coast, documenting every available tsunami stone in photographs, maps, and satellite views, and accumulating seismic and geological data about each stone’s local circumstances.

The end result was a book called An Incomplete Atlas of Stones. It was inspired, she writes, by “a combined interest in warning systems and cartography.”

[Image: From An Incomplete Atlas of Stones by Elise Hunchuck].

“Rising from the earth,” Hunchuck writes in the book’s introduction, “many [of the warning stones] were placed in the landscape to mark either the height of the inundation line or to mark territory above the inundation line.”

They formed a kind of worst-case boundary line for where solid land meets the sea, the known limit of catastrophic inundation.

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

The book introduces each stone taxonomically:

Each tsunami stone is introduced by its geographic coordinates: latitude, longitude, and elevation. Latitude and longitude site each stone on the surface of the earth while elevation situates each stone in relation to the mean level of the sea. The stones are further situated; first, by the boundaries of the village, town, or city they are located within; second, by their administrative prefecture; and, third, their geographical region. As each stone has been erected in response to a major tsunami, both the year and name of the tsunami is listed in addition to the stone’s relation to the inundation line (below the line, on the line, or above the line) of both its target tsunami and the tsunami of 2011. Each stone, at the time of its erection, was engraved with a message. The stones mapped in this atlas may be considered as belonging to one of two categories: as a memorial, commemorating people and places lost to an earthquake tsunami, or as a lesson, providing a description of events and directions as to where to build, where to evacuate to, and where waters have risen in the past.

Each stone or set of stones thus gets a four-page spread, giving the book a nice structural consistency.

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

As you can also see, satellite shots are used to show the landscape at different states in time: one depicts the coastline immediately following the 2011 tsunami, the next then showing the same locatio after up to five years of rebuilding have taken place.

In some of these comparisons, seemingly nothing at all has changed; in others, it appears nearly the entire landscape has been consumed by forests.

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

The entire book is nearly 250 pages in length, and the selections I’ve chosen here barely scratch the surface. The material Hunchuck has gathered would not only be served well by a gallery installation; the project also sets up an interesting formal precedent for other documentary undertakings such as this.

Given my own background, meanwhile—I am a writer, not an architect—I would love to see more of a reporting angle in future versions of this sort of thing, e.g. interviews with local residents, or even with disaster-response workers, connected to these landscapes through personal circumstance.

The narratives of what these stones are and what they mean would be well-illustrated by more than just data, in other words, including verbal expressions of how and why these warnings were heeded (or, for that matter, fatally overlooked).

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

In any case, the title of Hunchuck’s book—it is an incomplete atlas—also reveals that Hunchuck is still investigating what the stones might mean and how, as a landscape architect, she might respond to them. Her goal, she writes, “is not to offer an explicit response—yet. This incomplete atlas shares the stories of seventy five places, each without a definitive beginning or end.”

Along those lines, I’m reminded of a geologist quoted by the New York Times in their own coverage of the megaliths: “We need a modern version of the tsunami stones.”

Stay tuned for Hunchuck’s forthcoming website with more about the project.

(Vaguely related: Boundary Stones and Capital Magic and, to a certain extent, Watermarks.)

The Totality That Remains Invisible

[Image: Alice Aycock, “Project for Elevation with Obstructed Sight Lines” (1972)].

A few years ago, my wife and I went out to hike Breakneck Ridge when there was still a bunch of snow on the ground. It’s not, in and of itself, a hugely challenging hike, but between being ill-prepared for the slippery terrain, including a short opening scramble up snow-covered rocks, we found ourselves looking forward to the final vertical stretch before we could loop back down again to the road.

What was interesting, however, was that, from our point of view, each hill appeared to be the final one—until we got to the top of it and saw another one waiting there. Then it happened all over again: what appeared to be the final hill was actually just obstructing our view of the next one, and the next one, and the next one, and, next thing we knew, there were something like seven or eight different individual upward hikes, each hidden from view by the one leading up to it.

In 1972, earthworks artist Alice Aycock proposed a new, never-built work called “Project for Elevation with Obstructed Sight Lines.” It was part of a larger group, Aycock’s Six Semi-Architectural Projects, exhibited in 1973.

“Elevation with Obstructed Sight Lines” was meant to be a sculpted mound of earth, shaped for its optical effects.

[Image: Alice Aycock, “Project for Elevation with Obstructed Sight Lines” (1972), courtesy White Columns].

“Only one side of the resulting structure can be climbed,” Aycock wrote in her brief instructions for realizing the conceptual project. “All other side slopes are steep enough to deter climbing. The elevation of each successive climbing slope is determined by the sight lines of a 6 ft. observer so that only as the observer completes the ascent of a given slope does the next slope become visible.”

The piece obviously lends itself quite well to Kafka-esque metaphors—this structure that deliberately hides itself from view, never once perceptible in its totality but, instead, always revealing more of itself the further you go.

However, it also interestingly weds conceptual land art with hiking—that is, with embodied outdoor athleticism, rather than detached aesthetic contemplation—implying that, perhaps, trail design is an under-appreciated venue for potential conceptual art projects, where a terrain’s symbolic power only becomes clear to those engaged with hiking it.

(Aycock’s project spotted via Ends of the Earth: Land Art to 1974).

A Cenotaph for Tailings

[Image: From “Mining Cenotaph” by Alexis Quinteros Salazar; courtesy of the RIBA President’s Medals].

Here’s another project from the RIBA President’s Medals, this one by Alexis Quinteros Salazar, a student at the University of Chile in Santiago.

Called “Mining Cenotaph,” it imagines an “occupation” of the tailings piles that have become a toxic urban landmark and a spatial reminder of the region’s economic exploitation.

[Image: From “Mining Cenotaph” by Alexis Quinteros Salazar; courtesy of the RIBA President’s Medals].

A museum would be carved into the tailings; in Salazar’s words, this would be a “building that captures the history and symbolism behind mining, enhancing and revitalizing a memory that is currently disaggregated and ignored and has a very high touristic potential.”

[Image: From “Mining Cenotaph” by Alexis Quinteros Salazar; courtesy of the RIBA President’s Medals].

In an architectural context such as this, the use of the word “cenotaph” is a pretty clear reference to Étienne-Louis Boullée’s classic speculative project, the “Cenotaph for Newton.” Over multiple generations, that has become something of a prime mover in the history of experimental architectural design.

Punctured walls and ceilings bring light into the interior—

[Image: From “Mining Cenotaph” by Alexis Quinteros Salazar; courtesy of the RIBA President’s Medals].

—while the roof is a recreational space for visitors.

Of course, there are a lot of unanswered questions here—including the control of aerosol pollution from the tailings pile itself and that pile’s own long-term structural stability—but the poetic gesture of a public museum grafted into a pile of waste material is worth commending.

[Image: From “Mining Cenotaph” by Alexis Quinteros Salazar; courtesy of the RIBA President’s Medals].

The detail I might like this most is where the structure becomes a kind of inversion of Boullée’s dome, which was pierced to make its huge interior space appear illuminated from above by constellations. Here, instead, it is the perforations in the the rooftop that would glow upward from below, as if in resonance with the night skies high above.

[Image: From “Mining Cenotaph” by Alexis Quinteros Salazar; courtesy of the RIBA President’s Medals].

Salazar’s project brings to mind a few other proposals seen here over the years, including the extraordinary “Memorial to a Buried Village” by Bo Li and Ge Men, as well as Brandon Mosley’s “Mine Plug” (which actually took its name retroactively from that BLDGBLOG post).

Click through to see slightly larger versions of the images over at the RIBA President’s Medals website.

[Image: From “Mining Cenotaph” by Alexis Quinteros Salazar; courtesy of the RIBA President’s Medals].

Finally, don’t miss the Brooklyn food co-op posted earlier, also a recent President’s Medal featured project.

The Museum At The Bottom Of The Sea

[Image: Photo by Martin Siegel/Society of Maritime Archaeology, via Der Spiegel].

In 2012, German archaeologists began posting interpretive signs underwater, marking shipwrecks and even crashed airplanes at the bottom of the Baltic Sea as if they are in a museum, in order to make it clear to potential vandals, reckless tourists, and amateur collectors that these are culturally important sites, worthy of preservation.

“Alarmed at the looting of historically valuable shipwrecks in the Baltic Sea,” Der Spiegel reported at the time, “German archaeologists have started attaching underwater signs designating them as protected monuments. Hobby divers and trophy hunters are damaging a precious maritime legacy stretching back thousands of years, they warn.”

The sunken ship seen in the above image, for example, is just one of “some 1,500 marine monuments strewn across the seabed along the coast. The area has a wealth of well-preserved shipwrecks, lost cargo planes and even ancient settlements submerged through subsidence and rising water levels.” That these can be described as monuments is very important: they are not mere wreckage, scattered over the seabed, but artifacts on display for those who can reach them.

[Image: Photo by Martin Siegel/Society of Maritime Archaeology, via Der Spiegel].

The effect is strangely evocative, as if an architectural experiment has been going on beneath the waves of the Baltic Sea for the last few years, in which a museum, entirely without walls and seemingly with only very few visitors, has been secretly installed and constructed. It is a distributed, nonlinear museum of European ruins barely visible in the rising sea.

What’s so interesting from an architectural standpoint, however, is how a group of signs such as these can have such a huge narrative and spatial effect, as if you’ve entered some sort of undefined volumetric space without walls, hidden in the water all around you, a kind of invisible cultural institution stocked with objects that only you and your fellow divers, at that exact moment, can even see.

In fact, it makes me curious how the (totally brilliant and BLDGBLOG-supported) idea of creating a new National Park on the moon might work—and, more to the point, what such a park would really look like. Do we just post a few signs on the lunar surface indicating that historically important artifacts are present up ahead, or do we actually construct some sort of “museum” space there that would more adequately sustain an aura of cultural history?

Either way, it’s both hilarious and deeply strange that we could begin to experiment with what such a park might look like using—of all things—shipwrecks at the bottom of the Baltic Sea, and that German archaeologists, randomly posting cheap signs on the seabed, might have anticipated future strategies of historic preservation in otherwise deeply unearthly situations.

Buncefield Bomb Garden

[Image: The Buncefield explosion, via the BBC].

In one of the more interesting landscape design stories I’ve read this year, New Scientist reported back in March that the massive, December 2005 explosion at a fuel-storage depot called Buncefield in England, might have been strongly assisted by the site’s landscaping.

“A few years ago no one would have predicted that a row of trees and shrubs could make the difference between a serious fire and a catastrophic explosion,” the magazine suggests. But now, it’s becoming a reasonably accepted notion that the physical layout of the Buncefield site’s plantlife—from the “shrubs and small trees” down to their individual “twigs and branches”—can work to contain and concentrate, and, worse, add explosive surface area to what would otherwise have simply been a gas leak.

Indeed, the ongoing investigation at Buncefield “might change the way storage depots, refineries and pipelines are designed, and how the sites are landscaped [emphasis added]. Along with conventional safety features like sensors and alarms, site operators may have to rethink the way that trees, hedges and shrubs are positioned.” Investigators have concluded that “even structures on nearby commercial developments could help to accelerate a flame,” meaning that, in the design of any landscape, from industrial parks to corporate lawns, there is a previously unknown capacity for detonation.

What’s incredible about this—if proven true—is that the potentially explosive landscaping of sites such as Buncefield might suggest, according to New Scientist, new geometries or diagrammatic possibilities for the design of jet engines, in particular “a novel aircraft propulsion system called a pulse detonation engine.” The garden as jet engine!

Putting this into the context of other landscape typologies, such as ritual gardens or sacred groves—as if we might someday have orchards that churn and pulse with controlled coils of fire, like the engine of some vast arboreal machine—makes this terrifying topographical phenomenon seem all the more mythic and extraordinary.

(Previously on BLDGBLOG: Star Garden).

The Topography of Hell

[Image: Dante’s Inferno, as imagined by Barry Moser].

It would seem fitting, on Halloween, to take a quick look at the landscape architecture of Hell—its topography and geographical forms, perhaps even its subsurface geology.

Inspired by a comparison someone made a while back between Edward Burtynsky’s photographs of the Bingham Pit—an open pit copper mine—in Utah, and an illustration by Botticelli of Dante’s Inferno, my interest in Hell’s topography was piqued.

The original comparison:


You’re looking at “Kennecott Copper Mine No. 22, Bingham Valley, Utah” (1983), by Edward Burtynsky, and… Botticelli.

As Adrian Searle describes Botticelli’s work:

Terraced, pinnacled, travelling forever downward, the ledges, cities and basements of hell are furnished with sloughs, gorges and deserts; there are cities, rivers of boiling blood, lagoons of scalding pitch, burning deserts, thorny forests, ditches of shit and frozen subterranean lakes. Every kind of sin, and sinner, is catered for. Here, descending circle by circle, like tourists to Bedlam, came Dante and Virgil. Following them, at least through Dante’s poem, came Botticelli.

The ledges, cities and basements of hell.

But then I found loads of other images, including this skewed and unattributed manuscript scan, showing another mine-like Hell, or Hell as an extraction complex–

—complete with interesting subsurface faults and fractured bedrock, in section. One could easily imagine an obscure branch of the Renaissance academy in Rome publishing tract after tract on the exact geotechnical nature of the Inferno. Is it made of granite? Is it kiln-like? Is it slate? Is it ringed by rivers of uranium tailings?

It’s the literary-cosmological subgenre of Hell descriptions.

In any case, making a much less explicit visual or even Dantean connection here, there’s also Bartolomeo’s Hell.

And, finally, making no attempt at all to sustain the visual thread, there’s William Blake–

—a perennial favorite of mine, which shows us Dante and Virgil both, walking hand-in-hand through a shimmering geomagnetic curtain, a Northern Lights inside the earth. The gates of hell redesigned as a crackling, prehistoric, residual electricity that blasts in vaulted arcs from the faulted walls of granitic stratigraphy, prehuman, technicolor, properly infernal. Hell, as industrially re-designed by Nikola Tesla.

William Blake meets Jules Verne, who has become a mining engineer and is working on his own translation of Dante. They load-up on blank notebooks and descend together toward the vast, gyroscopic rotations of an electrical hell, taking notes on geology, mapping the stratigraphy of torture machines, where solid rocks mutate and minerals bleed. An epic poem starring geotechnical engineers, and rogue electricians. A hell-mapping expedition.

The climactic scene is a dialogue between Blake and Tesla, who argue, in front of huge glowing domes of black electricity, above vast canals of uranium, that there is an energetic basis for eternal life – or damnation…

Or perhaps the British Museum sends its imperial topographical unit deep into Siberia, where a giant hole has been discovered… Electrical storms form in its overgrown mouth and screams can be heard…

Anyway – Happy Halloween. Don’t forget your hell map.

Musicalizing the weather through landscape architecture

The idea of listening to a landscape – how to podcast a landscape, for instance – tends to be literally overlooked in favor of a site’s visual impact or even its smell. When I was in Greece a few years ago, for instance, hiking toward an abandoned village on Tilos, every step I took crushed wild onions, herbs, and different flowers, and a temporary envelope of scent, picked up by breezes, floated all around me as I walked uphill. I may not remember every single detail of what that path *looked* like – but I do remember how it *smelled*.
It was like hiking through salad.
In any case, you don’t often see people packing up the family car, or hopping onto a train, to tour Wales or the Green Mountains of Vermont so that they can listen to the hills – they’ll go out to look at autumn leaf colors, sure, or take photographs of spring wildflowers. But to go all the way to Wales so they can hear a particular autumn wind storm howling through the gorges, a storm that only lasts two days of every year? Specifically going somewhere to *listen to the landscape*.
Seasonal weather events and their sonic after-effects. The Great November Moan.
All of which brings me to the idea of sound mirrors.


Musicalizing a weather system through landscape architecture.
BLDGBLOG here proposes a series of sound mirrors to be built in a landscape with regular, annual wind phenomena. A distant gully, moaning at 2am every second week in October due to northern winds from Canada, has its low, droning, cliff-created reverb carefully echoed back up a chain of sound mirrors to supply natural soundscapes for the sleeping residents of nearby towns.
Or a crevasse that actually makes no sound at all has a sound mirror built nearby, which then amplifies and redirects the ambient air movements, coaxing out a tone – but only for the first week of March. Annually.
Landscape as saxophone.


It’s a question of interacting with the earth’s atmosphere through human geotechnical constructions. Through sound mirrors.
What you’d need: 1) Detailed meteorological charts of a region’s annual wind-flow patterns. 2) Sound mirrors. 3) A very large arts grant.
You could then musicalize the climate.
With exactly placed and arranged sound mirrors atop a mesa, for instance, deep inside a system of canyons – whether that’s in the Peak District or Utah’s Canyonlands National Park – or even in Rajasthan, or western Afghanistan – you could interact with the earth’s atmosphere to create music for two weeks every year, amplifying the natural sounds of seasonal air patterns.
People would come, camp out, check into hotels, open all their windows – and just listen to the landscaped echoes.


A few questions arise: in this context, does Stonehenge make any sounds? What if – and this is just a question – it was built not as a prehistoric astronomical device but as a *landscape wind instrument*? You’d be out there wandering around the Cotswolds, thinking oh – christ, it’s 5000 years ago and we’re lost, but: what’s that? I hear Stonehenge… And then you locate yourself.
Sonic landmark.
This raises the possibility of building smaller versions of these sound mirrors in urban neighborhoods so that, for instance, Berlin’s Prenzlauer Berg sounds different than Mitte, which sounds different than Kreuzberg – which sounds different than South Kensington, which is different than Gramercy Park… Etc.
You’d always know which district of the city you were in – even which city you were in, full stop – based on what the wind sounded like.
(Which reminds me of another idea: that, to attract people to a city without much going for it, you could *flavor the water supply*: make it taste like Doritos, for instance, and then sell that on huge billboards: buy your new home in Detroit, the water tastes like Doritos… the water tastes like tofurky…).
Second: is there a sonic signature to the US occupation of Baghdad? And I don’t mean rumbling Hummers and airplane engines, I mean what if all those Bremer walls –


– generate sounds during passing wind storms? All the American military bases of Iraq moaning at 3am as desert breezes pass by.
What does the occupation *sound like*?
A sonic taxonomy of architectural forms could begin…