Anticipatory Libraries of Other Worlds

[Image: The mineral library, via ESA].

A team of “European planetary geologists and young scientists” is assembling a mineral library to help future astronauts identify rocks on other worlds. “The goal,” according to the European Space Agency, “is to create a database of all known rocks and minerals on the Moon, Mars and meteorites surfaces for easy identification.”

This collection, assembled in anticipation of discoveries made far from Earth, can then be used as a basis of forensic identification and formal comparison. We will know future worlds through anticipatory fragments we have collected here on Earth.

Although this particular “library” appears to be part of a specific training course, the ESA blog post about it links onward to what I believe is a separate institution, one called—incredibly—the Planetary Terrestrial Analogues Library.

There, the chemical spectra of rocks are analyzed to help understand “the mineralogical and geological evolution of terrestrial planets.” This, again, prepares humans and their robotic intermediaries to encounter landscapes so alien they cannot be understood at first glance, yet similar enough to our home world we can still work out what they’re made of.

Terrestrial Chiaroscuro

[Image: Reuben Wu, from Lux Noctis].

I’ve been a fan of photographer Reuben Wu’s work for years—it’s hard to visit even his Instagram feed and not come away in a state of awe—so I was thrilled to contribute a short essay for his new book, Lux Noctis.

[Image: Reuben Wu, from Lux Noctis].

Lux Noctis is also the name of an ongoing project of his that uses drone-mounted LED lights to illuminate remote geological formations, towering figures highlighted against the landscape with what appear to be haloes or celestial spotlights.

It’s an ingenious approach to landscape lighting that Wu continues to push in new directions, and one that I compare in my essay to chiaroscuro, the use of dramatic, often single-point lighting to create deep contrasts and a sense of roiling, three-dimensional activity, a technique dating back to the Renaissance.

In Wu’s case, this is terrestrial chiaroscuro: unexpected, robotic sources of aerial light that transform how landscapes can be depicted.

[Image: Reuben Wu, from Lux Noctis].

The book is now available for preorder from Kris Graves Projects, publisher of many other artists books also worth a browse while you’re there.

Dark Matter Mineralogy and Future Computers of Induced Crystal Flaws

[Image: Mexico’s “Cave of the Crystals,” via Wikipedia].

I guess I’ve got minerals on the brain.

Anyway, there was an amazing story last week suggesting that, deep inside the planet, minerals might exhibit flaws associated with “collisions with dark matter.” In a sense, this would make the entire interior of the earth a de facto dark matter detector—or, according to researchers at the University of Michigan, “minerals such as halite (sodium chloride) and zabuyelite (lithium carbonate), can act as ready-made detectors.”

Proving this hypothesis sounds like the opening scene of a blockbuster science fiction film: “An experiment could extract the minerals—which can be around 500 million years old—from kilometres-deep boreholes that already exist for geological research and oil prospecting. Physicists would need to crack open the extracted minerals and scan the exposed surfaces under an electron or atomic force microscope for the tracks made by recoiling nuclei. They could also use X-ray or ultraviolet 3D scanners to study bigger chunks of minerals faster, but with lower resolution.”

Either way, it’s incredible to imagine that slightly altered mineral structures deep inside the planet might reveal the presence of dark matter washing through the cosmos. After all, the Earth is allegedly “constantly crashing through huge walls of dark matter,” so the idea that some rocks might be glitched and scratched by these impacts isn’t that hard to believe. In fact, this brings to mind another hypothesis, that the GPS satellite network is, in fact, a huge, accidental dark matter detector.

Read more at Nature.

Meanwhile, ScienceDaily reported earlier this month that flaws deliberately introduced into the crystal forms of diamonds could be structured such that they improve those diamonds’ capacity for quantum computation. Apparently, a team at Princeton has designed new kinds of diamonds “that contain defects capable of storing and transmitting quantum information for use in a future ‘quantum internet.’”

There is obviously no connection between these two stories, but that won’t stop me from imagining some vast new quantum computer network, coextensive with the Earth’s interior, performing prime-number calculations along dark matter-induced crystal flaws, crooked mineral veins flashing in the darkness with data, like some buried circuitboard throbbing beneath the continents and seas.

Read more at ScienceDaily.

(Related: Planet Harddrive.)

Secret British Caving Teams and the Mineralogy of Nuclear War

[Image: An otherwise unrelated photo of a cave in China, taken by @PhailMachine, via wallhere].

An interesting story that re-emerged during recent coverage of the Thai cave rescue is that a team of British cavers trapped underground in central Mexico for “more than a week” back in 2004 had been accused of having an ulterior motive.

Of the six men, five were British soldiers, and the crew was rescued not by local emergency crews but by a team flown in from Britain. Nothing about either alleged fact is even remotely suspicious, of course, but, according to local press at the time, “the men had been looking for materials that could be used to make nuclear weapons.”

This was apparently more than just a bar-room rumor: Mexico’s energy minister “waded into the row by saying he would send members of the country’s nuclear research institute into the caves because of rumours the British potholers were looking for uranium deposits.” Things “descended into farce,” according to the Guardian, “amid claims the MoD-sponsored expedition was a secret uranium prospecting exercise and that precise details of the trip were not forwarded to the relevant authorities.”

The conspiracy seems to have begun when someone noticed a particular piece of equipment in a photo of the caving team: “someone spotted radon dosimeters being used. This wasn’t a military training exercise; it was a bunch of guys on holiday, some of whom happened to be in the armed services.”

What the British team would even have done with such materials, if they had found them, including how they would have safely transported uranium out of the underworld in their caving gear—not to mention how they would have exploited this knowledge later, perhaps by developing a vast, illegal, underground mine in the middle of central Mexico?—is difficult to imagine, but, wow, would I like to read that novella.

Six British soldiers descend into the Earth beneath Mexico looking for the infernal materials of war, part of a much larger, secret global mission for subterranean weapons-prospecting, slipping into caves in Central America, the U.S. Southwest, the Namibian desert, and beyond, combining raw international espionage, classified satellite reports, weaponized mineralogy, advanced underground mapping techniques, and every gear-head’s camping equipment fantasy turned up to 11.

The Surface of a Terrestrial Sea

[Image: A sinkhole in Wink, Texas, surrounded by oil extraction and wastewater injection infrastructure].

A story I meant to include in my link round-up yesterday is this news item about a “large swath” of active oil well sites in Texas “heaving and sinking at alarming rates.”

In other words, previously solid ground has been turned into a slow-moving terrestrial sea.

“Radar satellite images show significant movement of the ground across a 4000-square-mile area—in one place as much as 40 inches over the past two-and-a-half years,” Phys.org reports. The land is tidal, surging and rolling with artificially induced deformation.

“This region of Texas has been punctured like a pin cushion with oil wells and injection wells since the 1940s and our findings associate that activity with ground movement,” one of the researchers explains.

[Image: Infrastructure near Wink, Texas].

What’s particularly fascinating about this is why it’s alleged to be happening in the first place: a jumbled, chaotic, quasi-architectural mess of boreholes, abandoned pipework, and other artificial pores has begun churning beneath the surface of things and causing slow-motion land collapse.

For example, “The rapid sinking is most likely caused by water leaking through abandoned wells into the Salado formation and dissolving salt layers, threatening possible ground collapse.” Or a nearby region “where significant subsidence from fresh water flowing through cracked well casings, corroded steel pipes and unplugged abandoned wells has been widely reported.”

This utterly weird, anthropocenic assemblage—or should I say anthroposcenic—has also changed the terrain in other ways. Water leaking into an underground salt formation has “created voids,” for example, which have “caused the ground to sink and water to rise from the subsurface, including creating Boehmer Lake, which didn’t exist before 2003.” It’s like upward-falling rain.

The site brings to mind the work of Lebbeus Woods: jammed-up subterranean infrastructure, in a sprawling knot of abandoned and semi-functional machinery, causing the solid earth to behave more like the sea.

Read more at Phys.org.

Gold Fault Laser

[Image: Drawing courtesy Geothermal Futures Lab].

In the general chaos of renovating a house here in Los Angeles, I missed this lecture and reception on Friday night, launching a semi-fictional “Geothermal Futures Lab” at SCI-Arc.

It involves installing a gold-plated laser somewhere deep in the San Andreas Fault to extract geothermal energy from the landscape. Think of it as a kind of gonzo version of the San Andreas Fault Observatory at Depth.

[Image: Drawing courtesy Geothermal Futures Lab].

The press release, from architect Mark Foster Gage, is a great example of a solipsistic inventor’s imagination at full blast—featuring “geothermal resonance technologies,” nano-gold foil-wrapped laser components, an “experimental phenolic cured resin foam,” and so on.

The functioning of the equipment would also rely, at least partially, on existing “metal deposits along the strike-slipping continental plates,” bringing to mind both the naturally occurring nuclear reactors in Gabon and the giant Earth-battery cells circulating beneath the forests of central Canada: landscapes whose geochemistry lends them to these sorts of giant, speculative energy installations.

Or see Norway’s extraordinary Hessdalen lights, a geologically electrified valley that seems ripe for a Mark Foster Gage-like architectural-energy proposal.

In all these cases, of course, what’s also worth noting is that, as fantastic as this sort of facility might seem—whether it’s a lab extracting electrical energy from the San Andreas Fault, as Foster Gage suggests, or one positioned above geochemical differentials in the Canadian soil—as soon as the power it supplies can be made available through the national grid, it would immediately pass from some sort of absolutely bonkers sci-fi vision of the near-future to, frankly, something utterly mundane. It would simply be where the power comes from, and people would shrug it off as a mere utility (if they think about it at all).

But what this also means is that we might already, right now, be missing out on seeing the truly otherworldly nature of our own power-generation facilities, which have all too easily disappeared into the infrastructural background of the modern world. Science fiction is already here, in other words, we just tend to refer to it as infrastructure. See, for example, Crescent Dunes or PS10. Or, for that matter, take a harder look at oil.

[Images: Drawings courtesy Geothermal Futures Lab].

In any case, here’s a sample from the project text, obligatory typos and all:

The exhibited technology capitalizes on the unique tungsten-saturated substrate of the San Andres fault through the use of a visible-light Q-switched Nd:YAG lasers, tuned to extract sustainable magno-electrical energy from a +678 degree Kelvin supercritical water deposits located adjacent to a stable magma chamber 4.4km beneath the Earths surface. This supercritical water, that behaves both as liquid and gas, is vaporized through 3,780 Kelvin bursts which at peak power induce a supercritical matter state releasing energy in exponential excess of its matter equivalent. The presence of heterogeneous frequency fields in metal deposits along the strike-slipping continental plates supercharges the pockets of supercritical water with magnetic nuons which are forced upwards with velocity µ as a result of the pressure gradient along the vertical faults. Due to the variable decay rate of metals in the presence of such high trajectory nuons, the prototype laser resonance mechanism itself is encased in an experimental phenolic cured resin foam (Cas no. 000050-00-0 with a normal specific gravity of 120 kg/m3) which insulates the process from outside magnetic interference. For rapid nuon decay protection the foam resin is additionally coated with the same seven µm micrometer nano-gold foil used to encase existing NASA satellites. This thick film of gold nano-molecules particles gives the machine its striking gold aesthetic appearance.

A nuon-resistant radiant machine buried in the San Andreas Fault, extracting energy from the friction between tectonic plates? With lasers? Yes, please.

[Images: Drawings courtesy Geothermal Futures Lab].

The exhibition itself is up until March 4; stop by SCI-Arc to see more or check out the project’s website.

(Earlier on BLDGBLOG: San Andreas: Architecture for the Fault. Thanks to Wayne Chambliss and Eva Barbarossa for the heads up!)

Speculative Mineralogy

[Image: An otherwise unrelated image of crystal twinning, via Geology IN].

It’s hard to resist a headline like this: writing for Nature, Shannon Hall takes us inside “the labs that forge distant planets here on Earth.”

This is the world of exogeology—the geology of other planets—“a research area that is bringing astronomers, planetary scientists and geologists together to explore what exoplanets might look like, geologically speaking. For many scientists, exogeology is a natural extension of the quest to identify worlds that could support life.”

To understand how other planets are made, exogeologists are synthesizing those planets in miniature in the earthbound equipment in their labs. Think of it as an extreme example of landscape modeling. “To gather information to feed these models,” Hall writes, “geologists are starting to subject synthetic rocks to high temperatures and pressures to replicate an exoplanet’s innards.”

Briefly, it’s easy to imagine an interesting jewelry line—or architectural materials firm—using fragments of exoplanets in their work, crystals grown as representations of other worlds embedded in your garden pavement. Or fuse the ashes of your loved ones with fragments of hypothetical exoplanets. “Infinite memorialization,” indeed.

In any case, recall that, back in 2015, geologist Robert Hazen “predict[ed] that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the cosmos.” As Hazen claimed, “Earth’s mineralogy is unique in the cosmos.” If we are, indeed, living in mineralogically unique circumstances, then this would put an end to the fantasy of finding a geologically “Earth-like” planet. But the search goes on.

This is not the only example of producing hypothetical mineral models of other worlds. In 2014, for example, ScienceDaily reported that “scientists for the first time have experimentally re-created the conditions that exist deep inside giant planets, such as Jupiter, Uranus and many of the planets recently discovered outside our solar system.” Incredibly, this included compressing diamond to a concentration denser than lead, using a giant laser.

Other worlds, produced here on Earth. Exoplanetary superdiamonds.

Read more over at Nature.

(Nature article spotted via Nathalia Holt).

Drawing Science/Drawing Fiction

I’ve been remiss in posting about a graduate course I’ll be co-teaching with the brilliant Nicholas de Monchaux up at UC Berkeley for the 2018-2019 academic year. The application period is currently open through December 2017.

Called “Drawing Science/Drawing Fiction: The Future of Californian Ecology,” the year-long Master’s course will be a combination of architectural design, experimental drawing methods, and narrative speculation, exploring what de Monchaux calls a “new relationship between architecture, media, ecology, and craft.”

The idea is to look ahead, not just at the future of California, but at the future of what California represents: cutting-edge industrial design, the global cinematic imagination, unparalleled demographic integration, agricultural innovation, adaptive infrastructure, and, of course, the risks of climate change.

[Image: From David Maisel’s “The Lake Project”; used with permission of the artist].

With the entire state of California at their disposal, students will be able to focus on everything from the U.S./Mexico border to the San Andreas Fault, from Silicon Valley and space tourism to the sci-fi productions of Hollywood. Agriculture, Artificial Intelligence, electric cars; species loss, wildfire, drought; policing, governance, human labor.

There are architectural scenarios to design and explore for all of these.

[Image: California’s Ivanpah Solar Energy Generating System photographed by Ethan Miller for Getty Images, via The Atlantic].

In an interview with Boom California published in 2014, novelist Kim Stanley Robinson—who was also interviewed here on BLDGBLOG way back in 2007—commented on the science-fictional appeal of California. By the time he went to college, he remarked, the landscape of the state had fundamentally changed; it was being terraformed for human habitation by the forces of industry and suburban development.

California, he realized, was itself a design project.

[Images: From David Maisel’s “The Lake Project”; used with permission of the artist].

Robinson explained to Boom that, in the blink of an eye, California became a “completely different landscape. At that same time I started reading science fiction (…) and it struck me that it was an accurate literature, that it was what my life felt like; so I thought science fiction was the literature of California. I still think California is a science fictional place. The desert has been terraformed. The whole water system is unnatural and artificial. This place shouldn’t look like it looks, so it all comes together for me. I’m a science fiction person, and I’m a Californian.”

Science fiction is the literature of California.

[Image: Early rendering for Michael Maltzan’s Six Street Viaduct in Los Angeles].

Briefly, this theme was developed further by an essay by Michael Ziser published in the same issue of Boom. “Postwar science fiction is to a surprising degree a phenomenon of the western United States,” Ziser wrote. It was also quite specifically Californian.

“As the producers of Golden Age sci-fi were lured to the region by the new economic opportunities available to writers in the pulp, television, and film industries of Southern California,” Ziser continued, “they were also drawn into an imaginative relationship with California’s physical novelty as a place sprung de novo from the plans of hydraulic engineers, road builders, and tract housing developers.”

Many of the major themes of science fiction in this period—the experience of living in an arid Martian colony, the palpable sense of depending in a very direct way on large technological systems, unease with the scope and direction of the military and aeronautics industries, the navigation of new social rules around gender and race—can be read as barely veiled references to everyday life in California. For sci-fi writers, teasing out the implications of an era in which entire new civilizations could be conjured almost from nothing through astonishing feats of engineering and capital was a form of realism. They were writing an eyewitness account of what was the most radical landscape-scale engineering project in the history of the world.

This idea of an “imaginative relationship with California’s physical novelty” is something we will be exploring in architectural form throughout the Studio One experience. In the process, we will approach California itself as a subject of design and compare the state to other regions currently experiencing their own de novo re-inventions, whether it’s a thawing Arctic or China’s ongoing building boom.

[Image: Floating caisson during the construction of the original Bay Bridge; photo by Clyde Sunderland, courtesy Library of Congress].

To develop and articulate their visions, students will be pushed to experiment with new forms of architectural representation, modeling, and drawing—or, as de Monchaux writes, “Our chief medium will be drawing, but we will engage and embrace a world of devices and tools—from scripting through mapping and virtual reality-that are changing, and expanding, the capacity of architecture to influence the world.”

I will be up in the Bay Area multiple times for this throughout the academic year, although not on a full-time basis; if you’re a fan of de Monchaux’s work, of science fiction, of architecture, of design’s potential for conjuring radical visions of landscape futures, then please consider applying. You have roughly two more months to do so.

[Image: Farming California, via Google Maps].

More information is available over at UC Berkeley.

Seismic Potential Energy

[Image: Photo by BLDGBLOG].

I got to hike with my friend Wayne last week through a place called the Devil’s Punchbowl, initially by way of a trail out and back from a very Caspar David Friedrich-ian overlook called the Devil’s Chair.

[Image: Wayne, Rückenfigur; photo by BLDGBLOG].

The Punchbowl more or less lies astride the San Andreas Fault, and the Devil’s Chair, in particular, surveils this violently serrated landscape, like gazing out across exposed rows of jagged teeth—terra dentata—or perhaps the angled waves of a frozen Hokusai painting. The entire place seems charged with the seismic potential energy of an impending earthquake.

[Image: It is difficult to get a sense of scale from this image, but this geological feature alone is at least 100 feet in height, and it is only one of hundreds; photo by BLDGBLOG].

The rocks themselves are enormous, splintered and looming sometimes hundreds of feet over your head, and in the heat-haze they almost seem buoyant, subtly bobbing up and down with your footsteps like the tips of drifting icebergs.

[Image: Looking out at the Devil’s Chair; photo by BLDGBLOG].

In fact, we spent the better part of an hour wondering aloud how geologists could someday cause massive underground rock formations such as these to rise to the surface of the Earth, like shipwrecks pulled from the bottom of the sea. Rather than go to the minerals, in other words, geologists could simply bring the minerals to them.

[Image: Photo by BLDGBLOG].

Because of the angles of the rocks, however, it’s remarkably easy to hike out amidst them, into open, valley-like groins that have been produced by tens of thousands of years’ worth of rainfall and erosion; once there, you can just scramble up the sides, skirting past serpentine pores and small caves that seem like perfect resting spaces for snakes, till you reach sheer drop-offs at the top.

There, views open up of more and more—and more—of these same tilted rocks, leading on along the fault, marking the dividing line between continental plates and tempting even the most exhausted hiker further into the landscape. The problem with these sorts of cresting views is that they become addictive.

[Image: Wayne, panoramically doubled; photo by BLDGBLOG].

At the end of the day, we swung by the monastic community at St. Andrew’s Abbey, which is located essentially in the middle of the San Andreas Fault. Those of you who have read David Ulin’s book The Myth of Solid Ground will recall the strange relationship Ulin explores connecting superstition, faith, folk science, and popular seismology amongst people living in an earthquake zone.

Even more specifically, you might recall a man Ulin mentions who once claimed that, hidden “in the pattern of the L.A freeway system, there is an apparition of a dove whose presence serves to restrain ‘the forces of the San Andreas fault’.”

This is scientifically cringeworthy, to be sure, but it is nonetheless interesting in revealing how contemporary infrastructure can become wrapped up in emergent mythologies of how the world (supposedly) works.

The idea, then, of a rogue seismic abbey quietly established in a remote mountainous region of California “to restrain ‘the forces of the San Andreas Fault’”—which, to be clear, is not the professed purpose of St. Andrew’s Abbey—is an idea worth exploring in more detail, in another medium. Imagine monks, praying every night to keep the rocks below them still, titanic geological forces lulled into a state of quiescent slumber.

[Image: Vasquez Rocks at sunset; photo by BLDGBLOG].

In fact, I lied: at the actual end of the day, Wayne and I split up and I drove back to Los Angeles alone by way of a sunset hike at Vasquez Rocks, a place familiar to Star Trek fans, where rock formations nearly identical to—but also less impressive than—the Devil’s Punchbowl breach the surface of the Earth like dorsal fins. The views, as you’d expect, were spectacular.

Both parks—not to mention St. Andrew’s Abbey—are within easy driving distance of Los Angeles, and both are worth a visit.

Angeleno Redux

[Image: Underground tennis courts in a limestone mine and refrigeration complex in Missouri].

It’s been a long month, but my wife and I have packed up and left New York, endlessly bubble-wrapping things while watching Midnight Run, Collateral, Chinatown, and other L.A.-themed movies on a laptop in an empty room, to head west again to Los Angeles, where we finally arrived today.

We visited the Cahokia Mounds, a heavily eroded indigenous North American city that, at its height, was larger than London, part of a Wisconsin-to-Louisiana band of settlements sculpted from mud and clay. The remains of history are not necessarily built with stone and timber—let alone steel and glass—but might exist in the form of oddly sloped hillsides or gardens long ago left untended.

[Image: Hiking around Cahokia Mounds].

Along the way, we managed to see the total eclipse in Missouri, sitting on a picnic blanket in a park south of St. Louis, people around us crying, yelling “Look at that!,” laughing, cheering like it was a football game, a day before driving further southwest to explore food-refrigeration caverns in active limestone mines for Nicky’s book.

That’s where we stumbled on the tennis courts pictured at the top of this post, at least seventy feet below ground, complete with a wall of framed photos showing previous champions of the underworld leagues, as we drove around for an hour or two through genuinely huge subterranean naves and corridors, with not-yet-renovated sections of the mine—millions of square feet—hidden behind titanic yellow curtains.

[Image: Behind these curtains are millions—of square-feet of void].

We listened to S-Town. We had breakfast in Oklahoma City. We made it to New Mexico to hike up a 10,000-year-old volcano with an ice cave frozen at a permanent 31º in one of its half-collapsed lava tubes where we met another couple who had driven up from Arizona “to get out of the heat.”

[Image: Bandera Volcano, New Mexico].

We then spent three days in Flagstaff to sleep, watch GLOW, and inadvertently off-road on our quest to do some hiking, up fire roads, up canyons behind Sedona, up hills in the rain, looking north toward the cinder cones of dead volcanoes that we visited a few years ago for Venue, where, in the 1960s, NASA recreated the surface of the moon using timed explosions.

[Image: Hiking outside Flagstaff].

In any case, we’re now back in Los Angeles, the greatest city in the United States, the one that most perversely fulfills whatever strange promises this country offers, and we’ll be here for the long haul. In fact, there’s no real reason to post this, other than: why not? But, if you live in L.A., or anywhere in California, perhaps we’ll cross paths soon.

Logan

[Image: Philadelphia’s Logan neighborhood, via Google Maps].

On a work trip to Philadelphia last week, I learned about the city’s semi-evacuated Logan neighborhood. As you can see in the satellite view, above, a huge swath of the neighborhood was emptied of its residents, their buildings torn down—because the ground there is not really ground at all, but “an unstable foundation of cinder and ash on a creek bed.”

As the New York Times reported back in 1989, “row houses listed at angry angles, sidewalks were crumbled and the ground seemed no more steady than the nerves of the residents… The houses are sinking, officials say, because the soil is shifting.”

“Some parts of vacant houses, like front porches or walls, have collapsed on their own,” we read, as if the neighborhood had become a slow, gridded sea of unspectacular but relentless subterranean motion. Some houses took on the form of scuttled ships: “Some sag. Some list. Some lean into each other, Corinthian columns askew. One front porch juts upward, like the prow of a galleon. In some homes, the tilt is so bad it looks as if dishes would slide off the dinner table.”

[Image: The empty streets of Logan, via Google Street View].

Unsurprisingly, the results were often nightmarish. Houses were “constantly flooded by raw sewage” from leaking pipes. Gas lines exploded. Or this, also from the New York Times:

Elizabeth Stone, a secretary who has lived in Logan for 15 years with her husband and three children, said she moved her washing machine from the basement to her kitchen because the basement floor was caving in. Her dryer is still down there, but she will not go in the basement because she is afraid the floor will collapse. Besides, she said, there are rats down there and there seem to be more of them in the neighborhood because of shifting foundations.

Perhaps the most evocative description, however, comes from a 2010 entry on the blog Philadelphia Neighborhoods.

A lone medical facility, run by Dr. Donald Turner, was never moved, receiving no help or financial aid from the city, which claimed it was somehow more stable than literally every other building around it. This, despite the fact that the ground has visibly buckled and the evacuated neighborhood around it became a magnet for crime.

In the late 1980s, when the removal of the houses commenced, [Dr. Turner’s] building was spared. “My building should have been one of the first to go,” he says. Houses sat directly next to and across the street from his office. “This whole street was houses!” he exclaims, pointing to a cement path that now sinks into an empty field.

As residents were moved out, the houses were left vacant and became hot spots for criminal mischief. When they were eventually torn down, things got even worse. Turner’s office fell victim to numerous crimes. “People have drilled through the ceiling and climbed in through the back window,” he explains, “they want pills, once one of them had a gun.”

Dr. Turner thus put up a rather apocalyptic sign proclaiming, “Mayor Goode Thought My White Friends Would Help Me.”

The real kicker, however, is this: “‘One time a cancer patient fell in a sinkhole,’ says Turner, ‘I thought they’d shut me down for sure.’”

They did not. The building, incredibly, is apparently still there.