Critical Engineering Summer Intensives

tower1[Image: Original photographer unknown].

The Critical Engineering Summer Intensives offered in Berlin this summer sound fascinating. They kick off in the second half of August, and include topics like biosurveillance, software-defined radio, and “offline publishing.”

Software-defined radio is easily the course I would take:

In this 2 day intensive, participants will learn how to use a 12 Euro USB dongle with free and open-source software to read, record and appropriate a vast world of signal around them. From weather satellite imagery to the International Space Station, police and military radio, pirate and amateur bands, software-defined radio allows for a laptop to become a powerful ear into a world otherwise unheard by the devices we use.
Outdoor excursions with antennae will be made to ensure participants have real-world experience discovering and recording RF phenomena. Skills, terms and concepts learned are then directly applicable to further self-learning in areas such as DIY cellular infrastructure, pirate and packet radio, radio-astronomy and wireless counter-surveillance.

Read about the other seminars and find sign-up details over at their website.

(Via @julian0liver).

Pop-Up Forests and Experimental Christmas Trees

The New York Times this morning profiles a plant pathologist at Washington State University named Gary Chastagner, who “heads one of the nation’s half-dozen Christmas tree research labs.” These labs include institutions such as WSU-Puyallup (producing “research-based information that creates a high-quality Christmas tree product for consumers”), New Mexico State University (“screening provenances of many native and non-native commercial Christmas tree species”), NC State (whose research includes “support on agritourism aspects of Christmas tree farms,” as well as a related Christmas Tree Genetics Program), and many more.

[Images: Photos by Randy Harris for the New York Times, courtesy of the New York Times].

While I realize there is absolutely no connection here, and that this is purely and only an example of conceptual confusion, I will admit that there was initially something of an odd thrill in reading about “Christmas Tree Genetics,” as two ideas briefly and incorrectly overlapped: the Christian doctrine of transubstantiation (or the belief that the body and blood of Christ appears, literally, in physical form here on Earth, through the transformation of everyday materials such as bread and wine… and Christmas trees?) and the European-druidic worship of various tree species, thus implying, as if from some strange theo-botanical forestry program, the genetic modification and/or enhancement over time of new holy tree species, with iconic and sacramental trans-subtantial holiday forests cultivated on research farms throughout the United States.

In any case, this national Christmas tree research program includes apparently extreme steps that almost seem to justify such an otherwise misbegotten interpretation, including “the largest and most sophisticated of operations,” as described by the New York Times, where scientists “harvest almost a million trees a year from an 8,500-acre plantation and remove them by helicopter” for analysis elsewhere, and a brief experiment that tested “whether you can successfully hydrate a Christmas tree with an IV drip,” like some arboreal patient seeking hospice from an ecosystem that betrayed it. You could probably soon get an M.S. in Christmas Tree Science.

The goal is to develop new and improved tree species for both indoor and outdoor display during the holiday season, and, along the way, to create a tree that can last weeks—even months—in a post-mortem state without shedding its needles.

These ever more clean and tidy trees can thus pop-up in houses, retail displays, shopping malls, outdoor plazas, and Catholic high schools around the world, forming new “migratory forests” that take up residence—but not root—in our cities once a year before retreating, in wait, for the next season.

This vision of a pop-up forest—an instant indoor ecosystem of genetically perfected, not-quite-trans-substantial tree species—brings to mind a different kind of pop-up forest, one that I wrote about for the most recent “year in ideas” issue of Wired UK.

[Image: From Wired UK‘s “World in 2013” issue, courtesy of Wired UK].

That all too brief piece looks ahead to an age of “insurgent shrublands,” disturbed landscapes, and other “fast-emerging but short-lived ecosystems in an era of nonlinear climate change.” It refers to work by, amongst others, Natalie Boelman and Kevin Griffin, who are currently pursuing otherwise unrelated work at the Lamont Doherty Earth Observatory, and science writer Andrew Revkin; and it covers a variety of ideas, from the changing soundscapes of the Arctic as the rapidly defrosting polar north fills up with new, invasive bird songs, to the increased likelihood of tree-branch collapse as certain species—such as oak—grow much faster in polluted urban atmospheres.

In this context, the idea of a “pop-up forest” takes on a different, altogether less celebratory meaning.

[Image: From Wired UK‘s “World in 2013” issue, courtesy of Wired UK].

You can read the piece—as well as one by Ferris Jabr on electricity-generating bacteria and a short article by Jeremy Kingsley on open-source construction—here.

Forensic Flowers

Two quick botanical stories in the news:

1) A short piece in The Scientist profiles artist Macoto Murayama, who “began applying the computer graphics programs and techniques he had learned while studying architecture at Miyagi University of Education in Sendai to illustrate, in meticulous detail, the anatomy of flowers.”

[Image: A flower by Macoto Murayama, via The Scientist].

Murayama physically dissects flowers in his studio, uncovering what he calls their “hidden mechanical and inorganic elements”; he then “sketches what he sees, photographs it, and models it on the computer using 3dsMAX software, a program typically used by architects and animators. Finally, he creates a composition of the different parts in Photoshop, and uses Illustrator to add measurements and other labels.” See more at The Scientist.

2) Archaeologists in Israel have used pollen trapped in plaster to reconstruct a “luxurious garden created by the Persians.” Their method reads like a rejected pitch for Jurassic Park 4: “Using a specialised technique for separating fossilized pollen trapped in the layers of plaster found in the garden’s waterways, researchers from Tel Aviv University’s Sonia and Marco Nadler Institute of Archaeology have now been able to identify exactly what grew in the ancient royal gardens of Ramat Rahel. By examining the archaeological evidence and the likely settings of specific plants they have also been able to reconstruct the lay-out of the garden.”

The hydrologically complex landscape, as reimagined by the archaeologists, was able to support a huge variety of species, including “ornamentals such as myrtle and water lilies, native fruit trees including the grape vine, the common fig, and the olive and imported citron, Persian walnut, cedar of Lebanon and birch trees. Researchers theorize that these exotics were imported by the ruling Persian authorities from remote parts of the empire to flaunt the power of their imperial administration.”

It would be interesting to reconstruct Central Park based solely on pollen grains trapped inside the painted walls and debris-filled lobbies of ruined hotels of a semi-submerged New York City 2,000 years from now. A Nobel Prize in Landscape Forensics.

(See also: Detection Landscapes).

Detection Landscapes

[Images: Botanical photogravures by Karl Blossfeldt].

I’ve been going through a lot of old files recently, including a short piece I clipped from New Scientist five years ago. I absolutely love stories like this, and I swoon a little bit when I read them; it turns out that “plants growing over old sites of human habitation have a different chemistry from their neighbors, and these differences can reveal the location of buried ruins.”

The brief article goes on to tell the story of two archaeologists, who, in collecting plants in Greenland, made the chemical discovery: “Some of their samples were unusually rich in nitrogen-15, and subsequent digs revealed that these plants had been growing above long-abandoned Norse farmsteads.”

The idea that your garden could be more like an indicator landscape for lost archaeological sites—that, below the flowers, informing their very chemistry, perhaps even subtly altering their shapes and colors, are the traces of abandoned architecture—is absolutely unbelievable.

[Images: More extraordinary photogravures by Karl Blossfeldt].

So why not develop a new type of flower in some gene lab somewhere, a designed species that reacts spectacularly to the elevated presence of nitrogen-15 from ruined settlements? Ruin Flowers® by Monsanto acting as deserted medieval village detection-landscapes, as thale cress does for mines.

You plant these flowers or trees or vineyards—future archaeological wine—and you wait three seasons for the traces to develop. Now imagine a modified tree that can only grow directly above ruined houses. Imagine an entire forest of these trees, curling and knurled to form floorplans, shaping out streets and alleyways, rooms instead of orchards and halls instead of groves. Now imagine the city beneath that forest becoming visible as the woods slowly spread, articulating whole lost neighborhoods over time.

[Image: Summer in a city by Jacek Yerka].

Genetically-modified plantlife used as non-invasive archaeological research tools would, at the very least, add a strange practicality to summer gardening activities, in the process turning whole surface landscapes into an unexpected new kind of data visualization program.

It’s the earth’s surface as browser for what waits undetected below.

(Blossfeldt images found via but does it float; see also Forensic Flowers).